

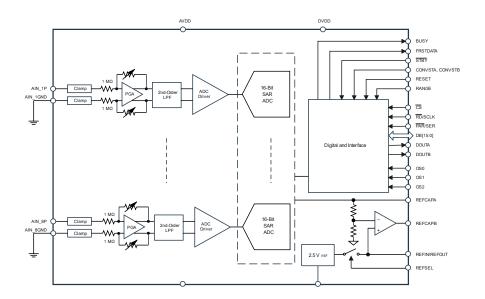
Features

- 8 simultaneously sampled inputs
- Single 5V analog supply and 1.71 to 5V VDRIVE
- 16bit ADC with 350 kSPS on all channels
- Bipolar inputs ranges: ±10V, ±5V
- · Analog input clamp protection
- 1 MΩ analog input impedance
- · On chip reference and buffer
- On chip oversampling digital filter
- · SPI compatible interface
- Temperature range: -40°C to 125°C
- Package: LQFP10X10-64

Applications

- · Power line monitor
- · Power line protection relays
- Motor control
- Data acquisition system (DAS)
- · Industrial Automation and controls

Description


TPAFE5160 is a 16bit, 8-channel simultaneous sampling, successive approximation (SAR) ADC. Each channel has a complete analog front end, as well as an ADC operating at 350 kSPS per channel. The analog front end features input clamp, a programmable gain amplifier (PGA) with high input impedance of $1M\Omega_{\rm J}$ low pass filter and ADC input driver.

The device features an internal precision reference with buffer to driver the ADC. A digital interface supports serial, parallel and parallel byte communication, which can be used with varies host controllers.

The TPAFE5160 can accept ±10V or ±5V true bipolar inputs with a single 5V supply. Also the high input impedance allows direct connection to transformers or other sensors without external driver circuits.

The zero latency conversion with high performance also makes the device suitable for industrial automation and control applications.

Typical Application Circuit

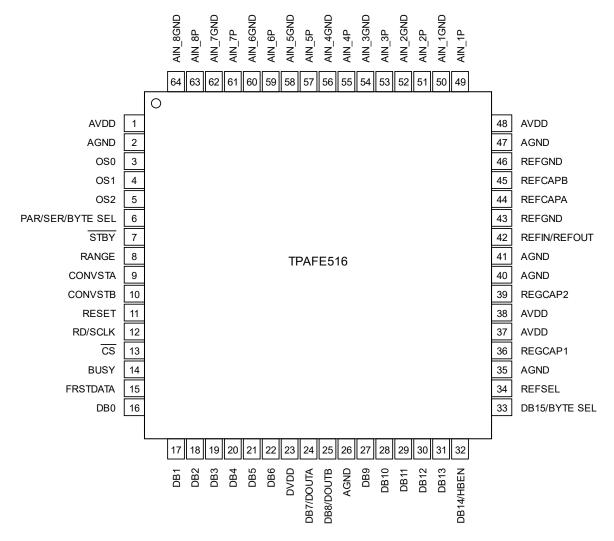
Product Family Table

Order Number	Input Range(V)	Package	
TPAFE5160SI08-QP7R	±10, ±5	LQFP10X10-64	

www.3peak.com 2 / 29 Rev.A.0

Table of Contents

Features	
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	
Revision History	4
Pin Configuration and Functions	5
Pin Functions	5
Specifications	
Absolute Maximum Ratings	
ESD, Electrostatic Discharge Protection	
Recommended Operating Conditions	
Thermal Information	
Electrical Characteristics	
Timing Specifications	
Timing Diagrams	
Detailed Description	19
Overview	19
Feature Description	19
Device Functional Modes	20
Tape and Reel Information	26
Package Outline Dimensions	27
LQFP10X10-64	27
IMPORTANT NOTICE AND DISCLAIMER	29



Revision History

Date	Revision	Notes
2021-11-15	Rev.Pre.0	Pre-Release Version
2022-3-1	Rev.Pre.1	Updated diagram and EC table
2022-5-10	Rev.Pre.2	Updated EC table
2022-5-22	Rev.Pre.3	Updated Tape and reel parameter
2022-6-20	Rev.Pre.4	Updated EC table
2022-11-21	Rev.Pre.5	Updated Timing Specifications and Timing Diagrams
2023-07-10	Rev.A.0	Initial Released

Pin Configuration and Functions

Pin Functions

	PIN		DESCRIPTION		
NO	Name	TYPE	DESCRIPTION		
1	AVDD	Р	Analog supply pin.		
2	AGND	Р	Analog ground pin.		
3	OS0	DI	Oversampling control pin.		
4	OS1	DI	Oversampling control pin.		
5	OS2	DI	Oversampling control pin.		
6	PAR/SER/BYTE SEL	DI	Control pin to select serial, parallel, or parallel byte interface mode.		
7	STBY	DI	Control pin to select standby or shutdown mode, active low.		

		1	
			Multi-function logic input pin:
			When STBY is low, this pin selects between the standby and shutdown modes.
8	RANGE	DI	When STBY is high, this pin selects input range ±10V or ±5V.
			Active high logic input to control start of conversion for first half count of device
			input
9	CONVSTA	DI	channels
			Active high logic input to control start of conversion for second half count of
			device input
10	CONVSTB	DI	channels
11	RESET	DI	Active high logic input to reset the device digital logic
			Multi-function logic input pin
			Multi-function logic input pin:
40	<u>DD</u> /CCL I/	ы	this pin is active-low ready input pin in parallel and parallel byte interface;
12	RD/SCLK	DI	this pin is clock input pin in serial interface mode.
13	CS	DI	Active low logic input chip-select signal
14	BUSY	DO	Active high digital output indicating ongoing conversion
15	FRSTDATA	DO	Active high digital output indicating data read back from channel 1 of the device
16	DB0	DO	Data output DB0 (LSB) in parallel interface mode
17	DB1	DO	Data output DB1 in parallel interface mode
18	DB2	DO	Data output DB2 in parallel interface mode
19	DB3	DO	Data output DB3 in parallel interface mode
20	DB4	DO	Data output DB4 in parallel interface mode
21	DB5	DO	Data output DB5 in parallel interface mode
22	DB6	DO	Data output DB6 in parallel interface mode
23	DVDD	Р	Digital supply pin; decouple with AGND on pin 26.
			Multi-function logic output pin:
l			this pin is data output DB7 in parallel and parallel byte interface mode;
24	DB7/DOUTA	DO	this pin is a data output pin in serial interface mode.
			Multi-function logic output pin:
			this pin is data output DB8 in parallel and parallel byte interface mode;
25	DB8/DOUTB	DO	this pin is a data output pin in serial interface mode.
26	AGND	Р	Analog ground pin.
27	DB9	DO	Data output DB9 in parallel interface mode
28	DB10	DO	Data output DB10 in parallel interface mode
29	DB11	DO	Data output DB11 in parallel interface mode
30	DB12	DO	Data output DB12 in parallel interface mode
31	DB13	DO	Data output DB13 in parallel interface mode

			Multi-function logic input or output pin:
			this pin is data output DB14 in parallel interface mode;
			this pin is a control input pin for byte selection (high or low) in parallel byte
32	DB14/HBEN	DO	interface mode
			Multi-function logic input or output pin:
			this pin is data output DB15 (MSB) in parallel interface mode;
33	DB15/BYTE SEL	DO	this pin is an active high control input pin to enable parallel byte interface mode.
34	REFSEL	DI	Active high logic input to enable the internal reference
35	AGND	Р	Analog ground pin.
			Output pin 1 for the internal voltage regulator; decouple separately to AGND
36	REGCAP1	AO	using a 1-µF capacitor. Typical 4V.
37	AVDD	Р	Analog supply pin.
38	AVDD	Р	Analog supply pin.
			Output pin 2 for the internal voltage regulator; decouple separately to AGND
39	REGCAP2	AO	using a 1-µF capacitor. Typical 4V.
40	AGND	Р	Analog ground pin.
41	AGND	Р	Analog ground pin.
			This pin acts as an internal 2.5V reference output when REFSEL is high;
4.0	DEELWOEEGUT	410	this pin functions as input pin for the external reference when REFSEL is low;
42	REFIN/REFOUT	AIO	decouple with REFGND on pin 43 using a 10-µF capacitor.
			Reference GND pin. This pin must be shorted to the analog GND plane and
43	REFGND	Р	decoupled with
43	KEFGND	Г	REFIN/REFOUT on pin 42 using a 10-μF capacitor.
			Reference amplifier output pins. This pin must be shorted to REFCAPB and
44	REFCAPA	AO	decoupled to AGND using a low ESR, 10-µF ceramic capacitor. Typical 4V.
			Reference amplifier output pins. This pin must be shorted to REFCAPA and
45	REFCAPB	AO	decoupled to AGND using a low ESR, 10-µF ceramic capacitor. Typical 4V.
			Reference GND pin. This pin must be shorted to the analog GND plane and
			decoupled with
46	REFGND	Р	REFIN/REFOUT on pin 42 using a 10-μF capacitor.
47	AGND	Р	Analog ground pin.
48	AVDD	P	Analog supply pin.
49	AIN_1P	AIO	Analog input channel 1: positive input
50	AIN_1GND	AIO	Analog input channel 1: negative input
51	AIN_2P	AIO	Analog input channel 2: positive input
52	AIN_2GND	AIO	Analog input channel 2: negative input
53	AIN_3P	AIO	Analog input channel 3: positive input
54	AIN_3GND	AIO	Analog input channel 3: negative input
55	AIN_4P	AIO	Analog input channel 4: positive input

56	AIN_4GND	AIO	Analog input channel 4: negative input	
57	AIN_5P	AIO	Analog input channel 5: positive input	
58	AIN_5GND	AIO	Analog input channel 5: negative input	
59	AIN_6P	AIO	Analog input channel 6: positive input	
60	AIN_6GND	AIO	Analog input channel 6: negative input	
61	AIN_7P	AIO	Analog input channel 7: positive input	
62	AIN_7GND	AIO	Analog input channel 7: negative input	
63	AIN_8P	AIO	Analog input channel 8: positive input	
64	AIN_8GND	AIO	Analog input channel 8: negative input	

Specifications

Absolute Maximum Ratings

At T_A=25°C

	Parameter	Min	Max	Unit
AVDD to AGND		-0.3	7	V
DVDD to DGND		-0.3	7	V
AGND to DGND		-0.3	0.3	V
	Analog input voltage to AGND	-15	15	V
	Digital input to DGND	-0.3	DVDD + 0.3	V
	REFIN to AGND	-0.3	AVDD + 0.3	V
Inp	ut current to any pin except supplies	-10	10	mA
TJ	Maximum Junction Temperature	-40	150	°C
T _A Operating Temperature Range		-40	125	°C
T _{STG} Storage Temperature Range		-65	150	°C
T∟	Lead Temperature (Soldering 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD for all pins except analog input pins	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±5000	>
НВМ	Human Body Model ESD for analog input pins only	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±7000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002(2)	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Para	Min	Тур	Max	Unit	
AVDD	AVDD Analog supply voltage		5	5.25	V
DVDD	Digital supply voltage	1.71	3.3	AVDD	V

Thermal Information

Package Type	θ _{JA}	$oldsymbol{ heta}_{ extsf{JC(top)}}$	Unit
LQFP10X10-64	46	7.8	°C/W

www.3peak.com 9 / 29 Rev.A.0

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: V_{REF} =2.5V external/internal, AVDD = 4.75V to 5.25V, V_{DRIVE} =1.71V to AVDD, f_{SAMPLE} = 350 kSPS, T_{A} =-40°C to 125°C, Low Bandwidth Mode, unless otherwise noted.

Symbol	Parameter	Test o	condition	MIN	TYP	MAX	Unit
Dynamic Perfo	ormance						
		fin=1kHz sine wave,	±10V No oversampling	86	89.7		dB
	Signal to noise	unless otherwise noted	±5V No oversampling	85.5	89.5		dB
SNR	ratio	fin=130Hz	Oversampling by 16, ±10V Range	91	95.2		dB
		fin=130Hz	Oversampling by 16, ±5V Range	91	94.7		dB
	Signal to noise	fin=1kHz sine wave,	±10V No oversampling		89.5		dB
SINAD	SINAD + distortion ratio	unless otherwise noted	±5V No oversampling		89.4		dB
THD	Total harmonic distortion	All input range, fin=1KHz			-106		dB
SFDR	Spurious free dynamic range	fin=1KHz			-106		dB
Analog Input F	ilter						
		Low Bandwidth Mode	-3dB, ±10V		20.0		KHz
DW(0.1D)	Small signal bandwidth	Low Bandwidth Mode	-3dB, ±5V		12.7		KHz
BW(-3 dB)		High Bandwidth Mode	-3dB, ±10V		26.5		KHz
		High Bandwidth Mode	-3dB, ±5V		16.4		KHz

		Low Bandwidth Mode	-0.1dB, ±10V		3.3		KHz
DW(0.4 ID)	Small signal	Low Bandwidth Mode	-0.1dB, ±5V		2.2		KHz
BW(-0.1 dB)	bandwidth	High Bandwidth Mode	-0.1dB, ±10V		4.3		KHz
		High Bandwidth Mode	-0.1dB, ±5V		2.6		KHz
		Low Bandwidth Mode	±10V		10		us
Tgroup_delay	Group delay	Low Bandwidth Mode	±5V		16		us
		High Bandwidth Mode	±10V		8		us
		High Bandwidth Mode	±5V		12		us
DC Accuracy							
	Resolution		NO missing code		16		bit
DNL	Differential nonlinearity		f _{SAMPLE} = 200 kSPS, -40~85°C		±0.5	1.5	LSB
	Integral	f _{SAMPLE} = 200 kSPS, -40~85°C			±0.7	±2	LSB
INL	nonlinearity		350 kSPS, ~85°C		±1	±2.5	LSB
	Positive and	Ext reference			±4	±50	LSB
	Negative Full Scale Error	Int reference			±15		LSB

	,						
	Positive Full	Ext reference			±2		ppm/C
	Scale Error Drift	Int reference			±10		ppm/C
	Negative Full Scale Error	Ext reference			±2		ppm/C
	Drift	Int reference			±10		ppm/C
	Bipolar Zero		±10V		.4	.45	1.00
	Code Error		±5V		- ±1	±15	LSB
	Bipolar Zero		±10V		±10		μV/C
	Code Error Drift		±5V		±5		μV/C
	Bipolar Full Scale Error Matching				±6	±22	LSB
	Bipolar Zero Code Error matching		±5V ±10V		±3	±20	LSB
Analog Input					-		•
	lanut Danca	V V V CND	RANGE=1, ±10V range	-10		10	
	Input Range	Vx-VxGND	RANGE=0, ±5V range	-5		5	
	Analog Input		10V range		() (i.e. 0) (Die		uA
	Current		5V range		(Vin-2)/Rin		uA
C _{IN}	Input capacitance				5		pF
Rin	Input resistance				1Mohm		Mohm
Input Impedance Drift	Input Impedance Drift				±20		ppm/C
Reference inp	ut/output						
	Reference input voltage	REF SELECT=0, select Ext Ref, force voltage on REFIN/REFOUT		2.475	2.5	2.525	V
	Reference output voltage	REF_SELECT=1, REFIN/REFOUT output voltage T _A =25°C		2.495	2.5	2.505	V
	Reference voltage TC				±10		ppm/C

	T	Т		T T		Т	
		Voltage on REFCAPA and					
	V(REFCAPA/B)	REFCAPB	, also used for		4		V
		A	ADC				
LOGIC INPUT							
V _{IH}	Input high	input logic		0.7*VDRIVE			V
VIH	voltage	high voltage		0.7 VDRIVE			V
	Input low	input logic				0.0*\/DDI\/F	
VIL	voltage	low voltage				0.3*VDRIVE	V
0	Input	input			-		_
Cı	capacitance	capacitance			5		pF
		input				_	
lı	Input current	current				±2	uA
LOGIC OUTPU	IT					ı	
	Output high		current				
Vон	voltage		source=100uA	VDRIVE-0.2			V
	Output low		current				
V _{OL}	voltage		sink=100uA			0.2	V
	Float state						
	leakage current				±1	±20	uA
	Output						
Co	capacitance				5		pF
Conversion ra							
	conversion time				1.65		us
	Acquisition				1.00		40
	Time				1.2		us
	Throughput						
	Rate	Per channel				350	kSPS
Timing opesifi							
Timing specifi	cations						
			VDRIVE>2.7V			23.5	MHz
			751117272.77			20.0	
60114	frequency of						
SCLK	serial interface						
			VDRIVE>1.7V			15	MHz

AVCC normal		41	51	mA
AVCC Stanby		5	9	mA
AVCC Shutdown		11	25	uA

^{(1) 100%} tested at $T_A = 25$ °C.

Timing Specifications

 AV_{CC} = 5 V, V_{DRIVE} =1.7 V to 5.5 V, V_{REF} = 2.5 V, T_A = T_{MIN} to T_{MAX}

Parameter	V DRIVE	T _{MIN} , T _{MA} and 0.9 x	VDRIVE	Unit	Description
	Min	Тур	Max		
PARALLEL/SERIAL/BYTE N	IODE	ı	T	1	
t _{CYCLE}					1/throughput rate
		2.85		μs	Parallel mode, reading during or after conversion; or serial mode:
					V_{DRIVE} = 2.7 V to 5.5 V, reading during a conversion using $D_{OUT}A$
					and D _{OUT} B lines
		4.5		μs	Serial mode: V _{DRIVE} = 2.7 V, reading after a conversion using D _{OUT} A
					and D _{OUT} B lines
		6		μs	Serial mode: V _{DRIVE} = 1.7 V, reading after a conversion using D _{OUT} A
					and D _{OUT} B lines
t _{CONV}					Conversion time
		1.74		μs	Oversampling off;
		4.4		μs	Oversampling by 2;
		9.6		μs	Oversampling by 4;
		20		μs	Oversampling by 8;
		41		μs	Oversampling by 16;
		83		μs	Oversampling by 32;
		167		μs	Oversampling by 64;
t _{WAKE-UP} STANDBY		100		μs	STBY rising edge to CONVST x rising edge; power-up time from standby mode
+					otalias, inico
t _{WAKE-UP} SHUTDOWN Internal Reference		100		, ma	
internal Reference		180		ms	STBY rising edge to CONVST x rising edge; power-up time from shutdown mode
External Reference		13		ms	STBY rising edge to CONVST x rising edge; power-up time from
					shutdown mode
t _{RESET}		100		ns	RESET high pulse width
t ₁		40		ns	CONVST x high to BUSY high
t ₂	25			ns	Minimum CONVST x low pulse
t ₃	25			ns	Minimum CONVST x high pulse
t ₄	45			ns	BUSY falling edge to CS falling edge setup time
t ₅		0.5		ms	Maximum delay allowed between CONVST A, CONVST B rising edges
t ₆	110			ns	Minimum time between last $\overline{\text{CS}}$ rising edge and BUSY falling edge

t ₇	25		ns	Minimum delay between RESET low to CONVST x high
PARALLEL/BYTE READ OP	PERATION			
t ₈	0		ns	CS to RD setup time
t_9	0		ns	CS to RD hold time
t ₁₀				RD low pulse width
-10	22		ns	V _{DRIVE} above 2.7 V
	32		ns	V _{DRIVE} above 1.7 V
t ₁₁	10		ns	RD high pulse width
t ₁₂	10		ns	CS high pulse width; CS and RD linked
t ₁₃				Delay from CS until DB[15:0] three-state disabled
		21	ns	V _{DRIVE} above 2.7 V
		30	ns	V _{DRIVE} above 1.7 V
t ₁₄				Data access time after RD falling edge
		21	ns	V _{DRIVE} above 2.7 V
		30	ns	V _{DRIVE} above 1.7 V
t ₁₅	6		ns	Data hold time after RD falling edge
t ₁₆	6		ns	CS to DB[15:0] hold time
t ₁₇		20	ns	Delay from CS rising edge to DB[15:0] three-state enabled
SERIAL READ OPERATION				
f_{SCLK}				Frequency of serial read clock
		23.5	MHz	V _{DRIVE} above 2.7 V
		15	MHz	V _{DRIVE} above 1.7 V
t ₁₈				Delay from \overline{CS} until $D_{OUT}A/D_{OUT}B$ three-state disabled/delay from
				CS until MSB valid
		10	ns	V _{DRIVE} above 2.7 V
		15	ns	V _{DRIVE} above 1.7 V
t ₁₉				Data access time after SCLK rising edge
		21	ns	V _{DRIVE} above 2.7 V
		30	ns	V _{DRIVE} above 1.7 V
t ₂₀	0.4t _{SCLK}		ns	SCLK low pulse width
t ₂₁	0.4t _{SCLK}		ns	SCLK high pulse width
t ₂₂	6		ns	SCLK rising edge to D _{OUT} A/D _{OUT} B valid hold time
t ₂₃		15	ns	CS rising edge to D _{OUT} A/D _{OUT} B three-state enabled
FRSTDATA OPERATION				
t ₂₄				Delay from \overline{CS} falling edge until FRSTDATA three-state disabled
		11	ns	V _{DRIVE} above 2.7 V
	ĺ	20	ns	V _{DRIVE} above 1.7 V

t ₂₅	11 20	ns ns	Delay from CS falling edge until FRSTDATA high, serial mode V _{DRIVE} above 2.7 V V _{DRIVE} above 1.7 V
t ₂₆	22 32	ns ns	Delay from RD falling edge to FRSTDATA high V _{DRIVE} above 2.7 V V _{DRIVE} above 1.7 V
t ₂₇	22 32	ns ns	Delay from RD falling edge to FRSTDATA low V _{DRIVE} above 2.7 V V _{DRIVE} above 1.7 V
t ₂₈	22 32	ns ns	Delay from 16 th SCLK falling edge to FRSTDATA low V _{DRIVE} above 2.7 V V _{DRIVE} above 1.7 V
t ₂₉	20	ns	Delay from CS rising edge until FRSTDATA three-state enabled

Timing Diagrams

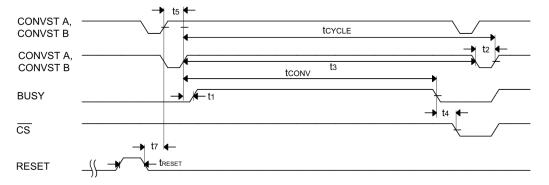


Figure 1. CONVST Timing—Reading After a Conversion

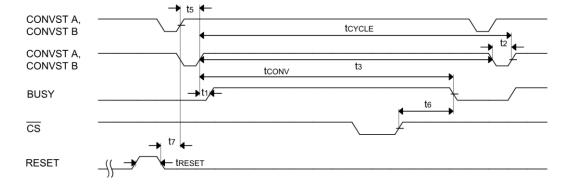


Figure 2. CONVST Timing—Reading During a Conversion

www.3peak.com 17 / 29 Rev.A.0

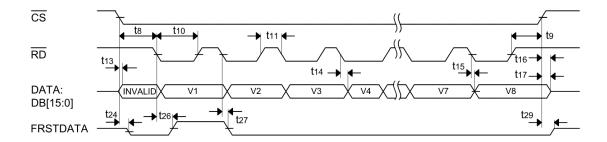


Figure 3. Parallel Mode, Separate $\overline{\mathit{CS}}$ and $\overline{\mathit{RD}}$ Pulses

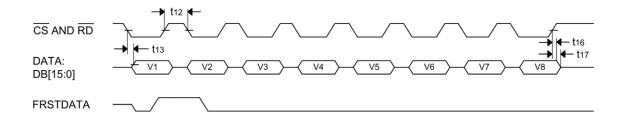


Figure 4. \overline{CS} and \overline{RD} , Linked Parallel Mode

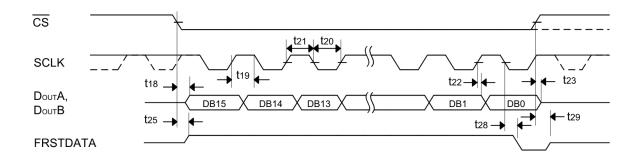


Figure 5. Serial Read Operation (Channel 1)

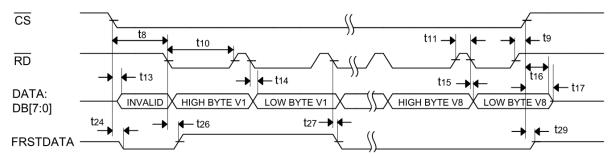


Figure 6. BYTE Mode Read Operation

www.3peak.com 18 / 29 Rev.A.0

Detailed Description

Overview

TPAFE5160 is a 16bit, 8-channel simultaneous sampling, successive approximation (SAR) ADC. Each channel has a complete analog front end, as well as an ADC operating at 350 kSPS per channel. The analog front end features input clamp, a programmable gain amplifier (PGA) with high input impedance of $1M\Omega$, low pass filter and ADC input driver.

The device features an internal precision reference with buffer to driver the ADC. A digital interface supports serial, parallel and parallel byte communication, which can be used with varies host controllers.

The TPAFE5160 can accept ±10V or ± 5V true bipolar inputs with a single 5V supply. Also the high input impedance allows direct connection to transformers or other sensors without external driver circuits.

Feature Description

Analog inputs

The TPAFE5160 has 8 analog input channels, and positive inputs AIN $_n$ P (n = 1 to 8) are the single ended analog inputs and the negative inputs AIN $_n$ GND should be tied to GND.

The input voltage range can be configured to bipolar ±10 V or ±5 V by the RANGE pin.

The device allows a ±0.3-V range on the AIN_nGND

Analog input impedance

Each analog input channel in the device presents a constant resistive impedance of 1 MΩ.

Matching the external source impedance on the AIN_nP input pin with an equivalent resistance on the AIN_nGND pin is recommended to cancel any additional offset error contributed by the external resistance.

Input Clamp Protection Circuit

The input clamp protection circuit allows analog input to swing up to ±30 V (typical). The input clamp circuit turns on beyond clamp voltage.

For input voltages above the clamp threshold, make sure that input current never exceeds the absolute maximum rating to prevent any damage to the device.

Don't keep the device in a state such that the clamp circuit is activated for extended periods of time, because this fault condition can degrade device performance and reliability.

Programmable Gain Amplifier (PGA)

The device has a programmable gain amplifier (PGA) at each individual input channel. The PGA converts the single-ended input signal into a fully-differential signal to drive internal ADC. The PGA also adjusts the common-mode voltage feeding into the ADC to ensure maximum usage of the ADC input dynamic range. The PGA gain is adjusted by configuring the RANGE pin of the ADC accordingly.

Low Pass Filter

Each channel of the TPAFE5160 features a second-order antialiasing low pass filter (LPF) at the output of the PGA, to remove the noise of the front-end amplifiers and gain resistors of the PGA.

ADC Driver

www.3peak.com 19 / 29 Rev.A.0

There is an integrated ADC input driver before each ADC channel. This integrated ADC driver eliminates the need any external amplifier, helping inputs of the ADC to settle to better than 16-bit accuracy before any sampled analog voltage gets converted. And thus the signal chain design for the user is simplified.

Digital filter

The TPAFE5160 has an optional digital averaging filter that can be used in slower throughput applications requiring lower noise and higher dynamic range. The oversampling ratio of the digital filter is determined by the configuration of the OS[2:0] pins.

In oversampling mode, the samples are averaged to reduce the noise of the signal chain as well as to improve the SNR of the ADC. The final output is also decimated to provide data for each channel.

		MAX THROUGHPUT
OS[2:0]	OS RATIO	PER CHANNEL
		(kSPS)
000	NO OS	350
001	2	175
010	4	87.5
011	8	43.75
100	16	21.875
101	32	10.94
110	64	5.47
111	NA	350

Reference

The TPAFE5160 can operate with either an internal voltage reference or an external voltage reference. The internal or external reference selection is determined by an external REFSEL pin,

The REFIN/REFOUT pin outputs the internal band-gap voltage (in internal reference mode) or functions as input pin to the external reference voltage (in external reference mode). The on-chip amplifier is enabled in both modes to drive the actual reference input of the internal ADC core. The REFCAPA and REFCAPB pins must be shorted together externally and a ceramic capacitor of minimum 10 µF should be connected between this node and REFGND to ensure that the internal reference buffer is operating as closed loop.

ADC transfer function

The TPAFE5160 outputs 16 bits data in binary twos complement format for both bipolar input ranges. The format for the output codes is the same across all analog channels.

Input range(V)	Full scale Range(V)	LSB(μV)
±10	20	305. 18
±5	10	152 . 59

Device Functional Modes

Device Interface: Pin Description

REFSEL (Input)

The REFSEL pin selects between the internal and external reference mode of the device.

www.3peak.com 20 / 29 Rev.A.0

If the REFSEL pin is set to logic high, then the internal reference is enabled and selected.

If the REFSEL pin is set to logic low, then the internal reference circuit is disabled and powered down. In this mode, an external reference voltage must be provided to the REFIN/REFOUT pin.

The internal reference buffer is always enabled under both conditions.

The reference mode after power-up depends on the state of the REFSEL input pin.

RANGE (Input)

The RANGE pin selects input range for all analog input channels.

If this pin is set to logic high, the device is configured to operate in the ±10-V input range.

If this pin is set to logic low, the device is configured to operate in the ±5-V input range.

The RANGE pin is also used to put the device in standby or shutdown mode depending on the state of the STBY input pin, as explained in the Power-Down Modes section.

• STBY (Input)

The STBY pin puts the device into one of two power down modes: standby and power down.

If this pin is set to logic high, the device is in normal operation mode.

If this pin is set to logic low, the device is in standby or power down mode, depending on the state of RANGE pin.

In shutdown mode, all internal circuitry is powered down,

In standby mode, the internal reference remains powered up to enable a relatively quicker recovery to normal operation mode.

PAR/SER/BYTE SEL (Input)

The PAR/SER/BYTE SEL pin selects between the parallel, serial and parallel byte interface mode for reading data from the device.

If this pin is set to logic high, then the serial or parallel byte interface mode is selected depending on the state of DB15/BYTE SEL pin. If DB15/BYTE SEL pin is high, the parallel byte interface is selected, and if the DB15/BYTE SEL is low, then serial mode is selected.

CONVSTA, CONVSTB (Input)

CONVSTA, CONVSTB (Input) are conversion control input pins.

CONVSTA can be used to simultaneously sample and initiate the conversion process for the first half count of device input channels (channels 1-4), and CONVSTB can be used to simultaneously sample and initiate the conversion process for the latter half count of device input channels (channels 5-8).

On the rising edge of the CONVSTA, CONVSTB signals, the internal track-and-hold circuits for each analog input channel are placed into hold mode and the sampled input signal is converted.

The CONVSTA, CONVSTB signals can be pulled low when the internal conversion is over, as indicated by the BUSY signal. At this point, the front-end circuit for all analog input channels acquires the respective input signals and the internal ADC is not converting.

The output data can be read from the device irrespective of the status of the CONVSTA, CONVSTB pins.

RESET (Input)

The RESET pin can be used to reset the device at any time in an asynchronous manner. When the RESET pin is set to logic high, the device is in reset mode, and remains the state until the pin returns low.

The device should be reset after power-up or recovery from shut down mode when all the supplies and

www.3peak.com 21 / 29 Rev.A.0

references have settled to the required accuracy.

RD/SCLK(Input)

RD/SCLK(Input) is dual function pin to be used in different interface mode.

Device operating condition	n	Functionality of RD/SCLK(Input)
	PAR/SER/BYTE SEL=0	Active-low digital input pin to read the output data from the device. In parallel or parallel byte interface mode,
Parallel interface	DB15/BYTE=0	the output bus is enabled when both the
	PAR/SER/BYTE SEL=1	CS and RD inputs are tied to a logic low
Parallel byte interface	DB15/BYTE=1	input.
		External clock input for the serial data
		interface. In serial mode, all synchronous
		accesses to the device are timed with
	PAR/SER/BYTE SEL=1	respect to the rising edge of
Serial interface	DB15/BYTE=0	the SCLK signal.

CS (Input)

The $\overline{\text{CS}}$ pin is an active-low, chip-select signal.

A rising edge on the $\overline{\text{CS}}$ signal outputs all the data lines in tri-state mode.

A falling edge of the \overline{CS} signal marks the beginning of the output data transfer frame in any interface mode of operation for the device.

OS[2:0]

The OS[2:0] pins are active-high digital input pins used to configure the oversampling ratio for the internal digital filter on the device.

When OS[2:0]=111, a higher filter bandwidth of ~30kHz is selected.

Device Modes of Operation

Power Down Modes

The device supports two power-down modes: standby mode and shutdown mode. The device can enter either power-down mode by pulling the $\overline{\text{STBY}}$ pin to a logic level. Additionally, the selection between these two power-down modes is done by the state of the RANGE pin.

Power Down Mode	STBY	Range
Standby	0	1
Shutdown	0	0

Standby mode

In standby mode, only internal reference of the circuit is powered up, and analog front-end, signal-conditioning

www.3peak.com 22 / 29 Rev.A.0

circuit for each channel remains powered down.

Shutdown mode

In shutdown mode, the entire internal circuitry is powered down.

Conversion Control

The device offers precise control of simultaneously sampling all analog input channels.

Simultaneous Sampling on All Input Channels

All the analog input channels to be simultaneously sampled by connecting CONVSTA and CONVSTB signals together, and a single CONVST signal should be used to control the sampling of all analog input channels of the device.

Sampling of all input channels in Parallel Interface Timing Diagram

Simultaneous Sampling Two Sets of Input Channels

Two sets of analog input channels can be simultaneously sampled by separating CONVSTA and CONVSTB signals. And the device could not operate in oversampling mode in this state.

Data read operation

The device updates the internal data registers with the conversion data for all analog channels at the end of every conversion phase (when BUSY goes low).

If the output data are read after BUSY goes low, then the device outputs the conversion results for the current sample.

If the output data are read when BUSY is high, then the device outputs conversion result for the previous sample.

There are three interface mode:

Interface mode	PAR/SER/BYTE SEL	DB15/BYTE SEL
Parallel interface	0	0
Parallel byte interface	1	1
Serial interface	1	0

Parallel Data Read

The device supports a parallel interface mode for reading the device output data using the control inputs (\overline{CS} and \overline{RD}), the parallel output bus (DB[15:0]), and the BUSY indicator.

For applications that use only one device in the system and does not share the parallel output bus with any other devices, the \overline{CS} and \overline{RD} input signals can be tied together, or the \overline{CS} signal can be permanently tied low. At the first falling edge of the \overline{CS} and \overline{RD} signal, the output data of channel 1 becomes available on the parallel bus to be read by the digital host. At this instant the FRSTDATA output also goes high, indicating channel 1 data are ready to be read back. The output data for the remaining channels are clocked out on the parallel bus on subsequent falling edges of the \overline{CS} and \overline{RD} signal in a sequential manner.

www.3peak.com 23 / 29 Rev.A.0

For applications that use multiple devices in the system, the CS and RD input signals must be driven separately.

Parallel Byte Data Read

The parallel byte interface mode is very similar to the parallel interface mode, except that the output data for each channel is read in two data transfers of 8-bit byte sizes.

In parallel byte mode, the DB14/HBEN pin decides the order of most significant byte (MSB byte) and least significant byte (LSB byte). When DB14/HBEN pin is tied high, the MSB byte of the conversion results is output first followed by the LSB byte. This order is reversed when DB14/HBEN is tied to logic low.

At the first falling edge of the $\overline{\text{RD}}$ signal, the first byte of the channel 1 conversion result becomes available on DB[7:0]. This byte is followed by the second byte of conversion data on the next falling edge of the RD signal.

Serial Data Read

This interface mode uses a CS control input, a communication clock input (SCLK), BUSY and FRSTDATA output indicators, and serial data output lines DOUTA and DOUTB.

A total of 16 SCLK cycles are required to clock out 16 bits of conversion result for each channel and the same process can be repeated for the remaining channels in an ascending order.

The conversion results from the first set of channels appear first on DOUTA, followed by the second set of channels if only DOUTA is used for reading data. This order is reversed for DOUTB, in which the second set of channels appear first followed by the first set of channels. The use of both data output lines reduces the time needed for data retrieval and a higher throughput can therefore be achieved in this mode.

Data Read During Conversion

The device allows data read when and the ADC is converting and the BUSY output is high status. In this case, the ADC outputs conversion results for previous samples.

The data read back during conversion mode allows faster throughput to be achieved from the device.

Data Read During Conversion

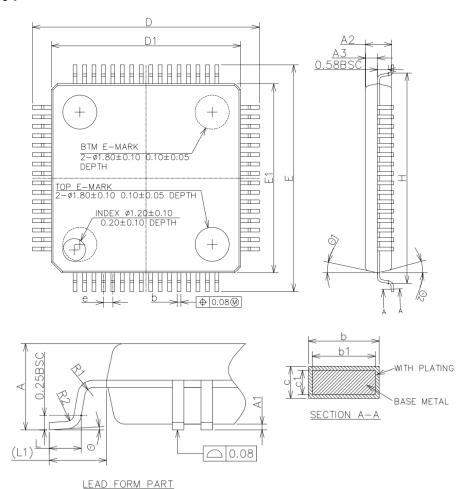
The device can be configured in oversampling mode by the OS[2:0] pins. The input on the OS pins is latched on the falling edge of the BUSY signal to configure the oversampling rate for the next conversion. In this mode, the CONVST A and CONVST B signals should be tied or driven together.

The BUSY signal duration varies with the OSR setting because the conversion time increases with OSR setting.

Oversampling the input signal reduces noise during the conversion process, thus reducing the histogram code spread for a dc input signal to the ADC.

www.3peak.com 24 / 29 Rev.A.0

Tape and Reel Information



Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPAFE5160SI08-QP7R	LQFP10X10-64	330	28.4	12.085	12.085	2.1	16	24	Q2

Package Outline Dimensions

LQFP10X10-64

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX			
А	_	_	1.60			
A1	0.05	_	0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18	_	0.27			
b1	0.17	0.20	0.23			
С	0.13	_	0.18			
c1	0.117	0.127	0.137			
D	11.95	12.00	12.05			
D1	9.90	10.00	10.10			
E	11.95	12.00	12.05			
E1	9.90	10.00	10.10			
е	0.40	0.50	0.60			
Н	11.09	11.13	11.17			
L L1	0.53	_	0.70			
L1	1.00REF					
R1	0.15REF					
R2	0.13REF					
Θ	0°	3.5°	7°			
Θ1	11°	12°	13°			
Θ2	11°	12°	13°			

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPAFE5160SI08-QP7R	-40 to 125	LQFP10X10-64	AFE5160	3	1000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 29 / 29 Rev.A.0