

Features

■ Octal, 16-/12-Bit Pin Compatible DACs

TPC116S8: 16bit TPC112S8: 12bit

■ Low Power Consumption (1.6 mA typ)

■ Differential Nonlinearity: ±1LSB(max)

■ Glitch Energy: 2nV-s■ Power-On Reset to Zero

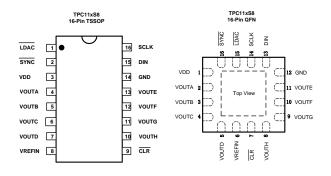
■ Supply Range: 2.7V to 5.5V

■ Buffered Rail-to-Rail Output Operation

■ Safe Power-On Reset (POR) to Zero DAC Output

■ Fast 30MHz, 3-Wire, SPI/QSPI/MICROWIRE-Compatible Serial Interface

 Schmitt-Trigger Inputs for Direct Optocoupler Interface

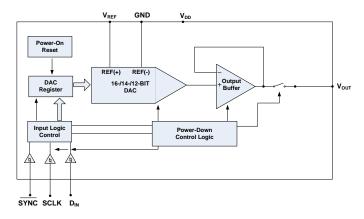

SYNC Interrupt Facility

■ Available in QFN16 and TSSOP-16 Package

Applications

- Gain and Offset Adjustment
- Process Control and Servo Loops
- Programmable voltage and current sources
- Programmable attenuators
- Automatic Test Equipment

Package Information (Top View)


The TPC116S8/TPC112S8 are pin compatible 16-bit and 12-bit digital-to-analog converter, these series product are eight channels, low power, buffered voltage-out DACs and are guaranteed monotonic by design. The devices use a precision external reference applied through the high resistance input for rail-to-rail operation and low system power consumption.

The TPC116S8/ TPC112S8 accepts a wide 2.7V to 5.5V supply voltage range. The parts incorporate a power-on reset circuit to ensure that the DAC output powers up to 0 V and remains there until a valid write takes place.

The TPC116S8/ TPC112S8 on-chip precision output amplifier allows rail-to-rail output swing to be achieved. For remote sensing applications, the output amplifier's inverting input is available to the user. The TPC116S8/ TPC112S8 use a versatile 3-wire serial interface that operates at clock rates up to 30 MHz and is compatible with standard SPI®, QSPI™, MICROWIRE™, and DSP interface standards.

The TPC116S8/ TPC112S8 are available in a small size 16-pin TSSOP package, all package are specified over the -40°C to +125°C extended industrial temperature range.

4 3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.

Block diagram of one DAC

Description

Order Information

Model Name	Order Number	Package	Transport Media, Quantity	Marking Information
TPC112S8	TPC112S8-TR	16-Pin TSSOP	Tape and Reel, 3,000	112S8

Octal 16-/12-Bit, Low Power, High Performance DACs

TPC116S8	TPC116S8-TR	16-Pin TSSOP	Tape and Reel, 3,000	116S8
TPC116S8	TPC116S8-QR	16-Pin QFN	Tape and Reel, 3,000	116S8

Absolute Maximum Ratings Note 1

Supply Voltage: V ⁺ – V ⁻ Note 27.0V	Operating Temperature Range40°C to 125°C
Input Voltage V 0.3 to V+ + 0.3	Maximum Junction Temperature 150°C
Input Current: +IN, -IN Note 3 ±20mA	Storage Temperature Range –65°C to 150°C
Output Short-Circuit Duration Note 4 Indefinite	Lead Temperature (Soldering, 10 sec) 260°C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	8	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	2	kV

Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit	
16-Pin TSSOP	180	35	°C/W	

Note 2: The supplies must be established simultaneously, with, or before, the application of any input signals.

Note 3: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.

Note 4: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

Electrical Characteristics

 $(V_{DD} = 5V, V_{REF} = 5V, C_L = 100pF, R_L = 10k\Omega, T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
STATIC AC	CCURACY (Note 5)						
	D 15	TPC112S8	12			D'I	
N	Resolution	TPC116S8	16			Bits	
INII	Later and Mills Process	TPC112S8 (12-bit) (Note 6)	-1	±0.25	1	LSB	
INL	Integral Nonlinearity	TPC116S8 (16-bit) (Note 6)	-16	±8	16	LSB	
DNII	Differential New York and	TPC112S8 (12-bit) (Note 6)	-1	±0.05	1	LOD	
DNL	Differential Nonlinearity	TPC116S8 (16-bit) (Note 6)	-1	±0.5	1	LSB	
	Zero Offset Error			6.5	30	mV	
OE	Full-Scale Offset Error		-30	0	30	mV	
	Offset-Error Drift			±1		μV/°C	
GE	Gain Error		-0.3	±0.13	0.3	%FS	
	Gain Temperature Coefficient			±2		ppmFS/ °C	
REFERENC	CE INPUT		'	1	•	•	
V_{REF}	Reference-Input Voltage Range		0.5		V_{DD}	V	
R _{REF}	Reference-Input Impedance			333		kΩ	
DAC OUTP	UT						
	Output Voltage Range	No load (typical)			V_{REF}		
	output voltage Hallige	10 kΩ load	0.2		V _{REF} -0.	V	
	DC Output Impedance			0.1		Ω	
0	Connective Lond (Note 7)	Series resistance = 0Ω			0.1	nF	
C_L	Capacitive Load (Note 7)	Series resistance = 1kΩ			15	μF	
RL	Resistive Load (Note 7)		5			kΩ	
	Short-Circuit Current	V _{DD} = 5.5V		35		mA	
	Power-Up Time	From power-down mode		25		μs	
DIGITAL IN	IPUTS (SCLK, DIN, SYNC)						
M	lanut High Valtage	V _{DD} = 5V	2			V	
VIH	Input High Voltage	V _{DD} = 3.3V	1.5			V	
V _{IL}	Input Low Voltage	V _{DD} = 5V			0.6	V	
V IL	Input Low Voltage	V _{DD} = 3.3V			0.4	V	
I _{IN}	Input Leakage Current	$V_{IN} = 0V \text{ or } V_{DD}$		±5	±10	μA	
Cin	Input Capacitance			1		pF	

Electrical Characteristics(continued)

 $(V_{DD} = 5V, V_{REF} = 5V, C_L = 100 pF, R_L = 10 k\Omega, T_A = -40 ^{\circ}C$ to +125 $^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25 ^{\circ}C$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{HYS}	Hysteresis Voltage			0.15		V
DYNAMIC I	PERFORMANCE (Note 7)					
SR	Voltage-Output Slew Rate	Positive and negative		1		V/µs
BW	Voltage-Output Settling Time	1/4 scale to 3/4 scale, to \leq 0.5 LSB, 12-bit		14		μs
	Reference -3dB Bandwidth	Hex code = 800 (TPC112S8), Hex code = 8000 (TPC116S8)		100		kHz
	Digital Feedthrough	Code = 0, all digital inputs from 0V to VDD, SCLK < 50MHz	0.5		nV • s	
	DAC Glitch Impulse	Major code transition		2		nV • s
	Output Noise	10kHz		90		nV/ √ Hz
	Integrated Output Noise	0.1Hz to 10Hz		25		μV _{P-P}
POWER RE	QUIREMENTS					
V_{DD}	Supply Voltage		2.7		5.5	V
lod	Supply Current	V _{DD} = 5V , No load; all digital inputs at 0V or V _{DD} , supply current only; excludes reference input current, midscale		0.8	1.5	mA
lod	Supply Current	V_{DD} = 3.3V , No load; all digital inputs at 0V or V_{DD} , supply current only; excludes reference input current, midscale		0.5	1	mA
	Power-Down Supply Current	No load, all digital inputs at 0V or V _{DD}			500	μA

Note 5: Linearity is tested within 20mV of GND and V_{DD} .

Note 6: Gain and offset is tested within 100mV of GND and V_{DD} .

Note 7: All timing specifications measured with $V_{IL} = V_{GND}$, $V_{IH} = V_{DD}$.

Serial Write Operation

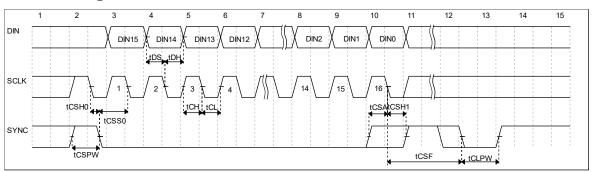


Figure 1. 16-Bit Serial-Interface Timing Diagram (TPC112S8)

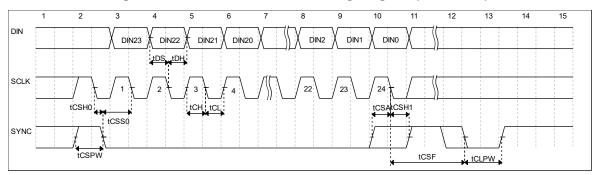
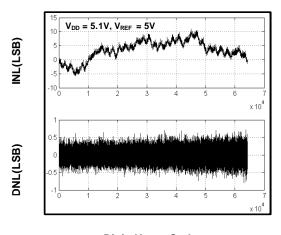
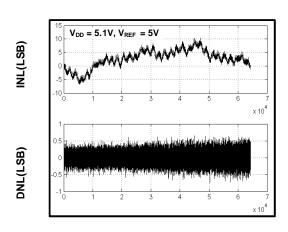


Figure 2. 24-Bit Serial-Interface Timing Diagram (TPC116S8)

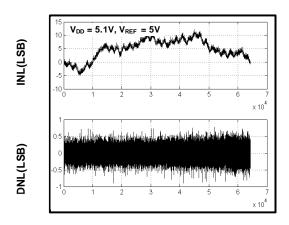

TIMING CHAR	TIMING CHARACTERISTICS (Figures 1,2 and 3)								
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS			
fsclk	Serial Clock Frequency		0		30	MHz			
tсн	SCLK Pulse-Width High		8			ns			
tcL	SCLK Pulse-Width Low		8			ns			
tcsso	SYNC Fall to SCLK Fall Setup Time		8			ns			
t _{CSH0}	SYNC Fall to SCLK Fall Hold Time		0			ns			
t _{CSH1}	SYNC Rise to SCLK Fall Hold Time		0			ns			
tcsa	SYNC Rise to SCLK Fall		12			ns			
tcsf	SCLK Fall to SYNC Fall		100			ns			
tos	DIN to SCLK Fall Setup Time		5			ns			
t _{DH}	DIN to SCLK Fall Hold Time		4.5			ns			
tcspw	SYNC Pulse-Width High		20			ns			
tclpw	SYNC Pulse-Width Low		20			ns			

Note: Parameters are provided by lab bench test and design simulation

Typical Performance Characteristics


 $V_S = 5V$, At $T_A = +25^{\circ}C$, unless otherwise specified

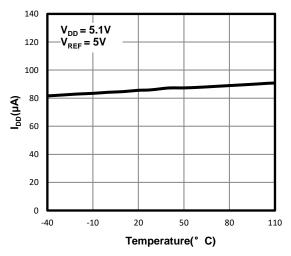
INL and DNL vs. Digital Input Code(+25°C TPC116S8)


Digital Input Code

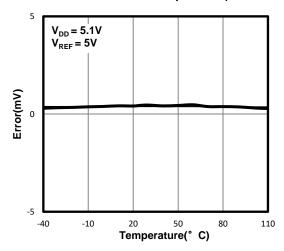
INL and DNL vs. Digital Input Code(-40°C TPC116S8)

Digital Input Code

INL and DNL vs. Digital Input Code(+105°C TPC116S8)

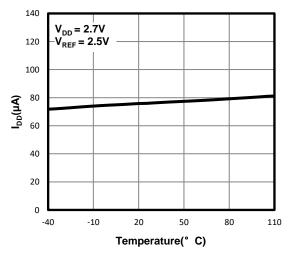


Digital Input Code

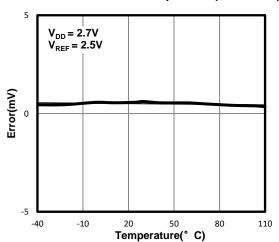

Typical Performance Characteristics

 $V_S = 5V$, At $T_A = +25$ °C, unless otherwise specified

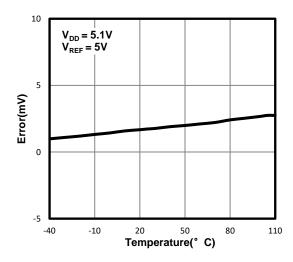
Power-Supply Current vs. Temperature(TPC116S8)

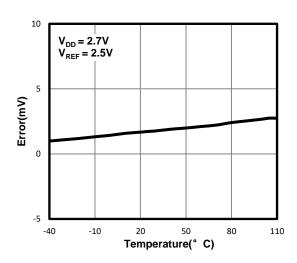


Zero-Scale Error vs. Temperature(TPC116S8)



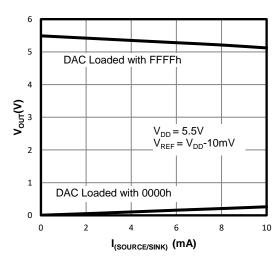
Full-Scale Error vs. Temperature(TPC116S8)

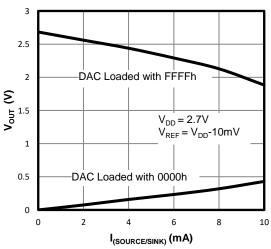

Power-Supply Current vs. Temperature(TPC116S8)



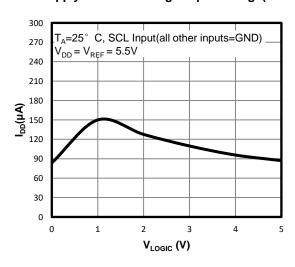
Zero-Scale Error vs. Temperature(TPC116S8)

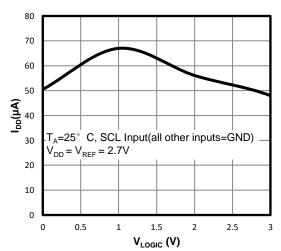
Full-Scale Error vs. Temperature(TPC116S8)



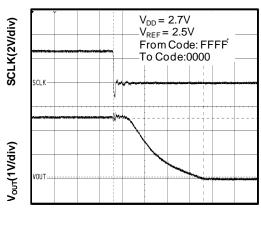

Typical Performance Characteristics

 V_S = 5V, At T_A = +25°C, unless otherwise specified


Source and Sink Current Capability(TPC116S8)


Source and Sink Current Capability(TPC116S8)

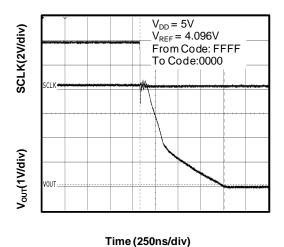
Supply Current vs. Logic Input Voltage(TPC116S8)


Supply Current vs. Logic Input Voltage(TPC116S8)

Supply Current vs. Supply Voltage(TPC116S8)

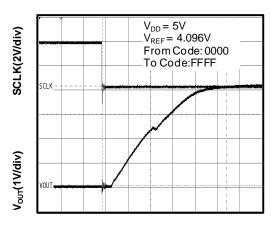
200 _V_{REF} = V_{DD} Reference Current Included,No Load 180 160 140 **Y**120 80 60 40 20 3.1 3.5 3.9 4.3 4.7 5.1 $V_{DD}(V)$

Full-Scale Settling Time(2.7V Falling Edge)

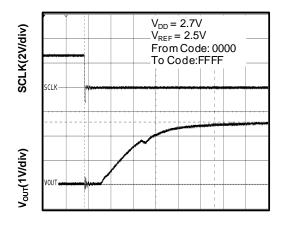


Time (160ns/div)

Typical Performance Characteristics

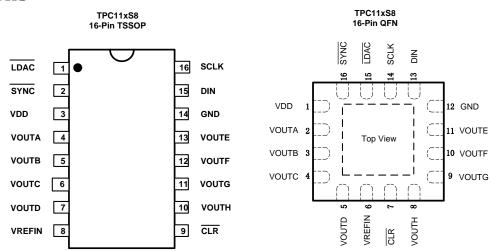

 $V_S = 5V$, At $T_A = +25$ °C, unless otherwise specified

Full-Scale Settling Time(5V Falling Edge)



Full-Scale Settling Time(2.7V Rising Edge)

Full-Scale Settling Time(5V Rising Edge)



Time (500ns/div)

Time (430ns/div)

Pin Functions

Octal 16-/12-Bit, Low Power, High Performance DACs

	TSSOP PIN	QFN PIN	Function
PIN Name	number	number	
r IIV IVallie	Hullibei		Load DAC When the LOAD signal is high, no DAC sutput undates assurables the
LDAC	1	15	Load DAC. When the LOAD signal is high, no DAC output updates occur when the input digital data is read into the serial interface. The DAC outputs are only updated when LDAC is low.
SYNC	2	16	Level-triggered control input (active LOW). This is the frame synchronization signal for the input data. When SYNC goes LOW, it enables the input shift register and data is transferred in on the falling edges of the following clocks.
VDD	3	1	Power supply input, 2.7V to 5.5V
OUTA	4	2	DACA output
OUTB	5	3	DACB output
OUTC	6	4	DACC output
OUTD	7	5	DACD output
VREFIN	8	6	Reference voltage input
CLR	9	7	Active Low. When it goes low, the DAC register is cleared and DAC output is reset to zero.
OUTH	10	8	DACH output
OUTG	11	9	DACG output
OUTF	12	10	DACF output
OUTE	13	11	DACE output
GND	14	12	Ground reference point for all circuitry on the part.
DIN	15	13	Serial data input. Data is clocked into the 16-/24-bit input shift register on each falling edge of the serial clock input. Schmitt-Trigger logic input.
SCLK	16	14	Serial clock input. Data can be transferred at rates up to 30MHz. Schmitt-Trigger logic input.
Thermal PAD		Thermal PAD	Connected to GND internally. Suggest to connect it to GND.

Octal 16-/12-Bit, Low Power, High Performance DACs **Detailed Description**

The TPC116S8/TPC112S8 are pin-compatible and software-compatible 12-bit and 16-bit DACs. The TPC116S8/TPC112S8 are 4-channels, low-power, high-reference input resistance, and buffered voltage-output DACs. The TPC116S8/TPC112S8 minimize the digital noise feed through from their inputs to their outputs by powering down the SCLK and DIN input buffers after completion of each data frame. The data frames are 16-bit for the TPC112S8 and 24-bit for the TPC116S8. On power-up, the TPC116S8/TPC112S8 reset the DAC output to zero, providing additional safety for applications that drive valves or other transducers which need to be off on power-up. The TPC116S8/TPC112S8 contain a segmented resistor string-type DAC, a serial-in/parallel-out shift register, a DAC register, power-on-reset (POR) circuit, and control logic. On the falling edge of the clock (SCLK) pulse, the serial input (DIN) data is shifted into the device, MSB first.

Applications Information

DAC Reference (REF)

The external reference input features a typical input impedance of $333k\Omega$ and accepts an input voltage from +2V to VDD. Connect an external voltage supply between REF and GND to apply an external reference.

Serial Interface

The TPC116S8/TPC112S8 3-wire serial interface is compatible with MICROWIRE, SPI, QSPI, and DSP. The interface provides three inputs: SCLK, SYNC, and DIN. The chip-select input (SYNC) frames the serial data loading at DIN. Following a chip-select input high-to-low transition, the data is shifted synchronously and latched into the input register on each falling edge of the serial-clock input (SCLK). Each serial word is 16-bit for the TPC112S8 and 24-bit for the TPC116S8. The first 3 bits are the control bits followed by 1 power-down bit as well as 12 data bits (MSB first) for the TPC112S8 and 22 data bits (MSB first) for the TPC116S8 as shown in Tables 1 and 2. The serial input register transfers its contents to the input registers after loading 16/24 bits of data and updates the DAC output immediately after the data is received on the 16-/24-bit falling edge of the clock. To initiate a new data transfer, drive SYNC high and keep SYNC high for a minimum of 20ns before the next write sequence. The SCLK can be either high or low between SYNC write pulses. Figures 1 and 2 show the timing diagram for the complete 3-wire serial interface transmission. The TPC116S8 DAC code is unipolar binary with VOUT = (code/65,536) x VREF. The TPC112S8 DAC code is unipolar binary with VOUT = (code/4096) x VREF.

Table 1. Operating Mode Truth Table (TPC112S8)

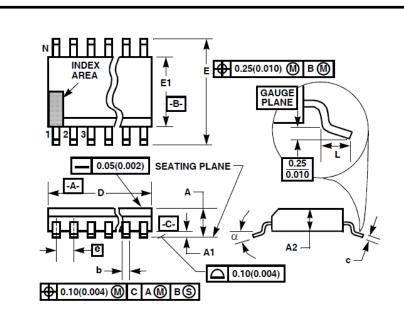
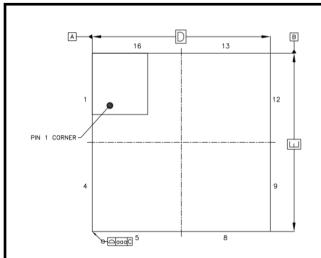
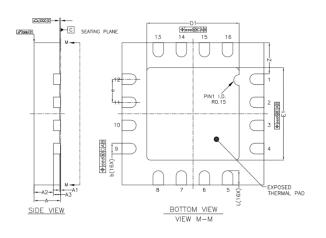

		Function			
A2	A1	A0	PD	DAC Data Bit	
D15	D14	D13	D12	D11~D0	
0	0	0	0	X	Update DAC A Data
0	0	1	0	X	Update DAC B Data
0	1	0	0	X	Update DAC C Data
0	1	1	0	X	Update DAC D Data
1	0	0	0	X	Update DAC E Data
1	0	1	0	X	Update DAC F Data
1	1	0	0	X	Update DAC G Data
1	1	1	0	X	Update DAC H Data
X	X	X	1	X	Power down (output High Z)

Table 2. Operating Mode Truth Table (TPC116S8)


		Function							
	MSB (N	o content)		A2	A1	A0	PD	DAC Data Bit	
D23	D22	D21	D20	D19	D18	D17	D16	D15~D0	
X	X	X	X	0	0	0	0	X	Update DAC A Data
X	X	X	X	0	0	1	0	X	Update DAC B Data
X	X	X	X	0	1	0	0	X	Update DAC C Data
X	X	X	X	0	1	1	0	X	Update DAC D Data
X	X	X	X	1	0	0	0	X	Update DAC E Data
X	X	X	X	1	0	1	0	X	Update DAC F Data
X	X	X	X	1	1	0	0	X	Update DAC G Data
X	X	X	X	1	1	1	0	X	Update DAC H Data
X	X	X	X	X	X	X	1	X	Power down (output High Z)


Package Outline Dimensions

TSSOP-16

	imensio	mensions					
Symbol	In Millimeters						
	MIN	NOM	MAX				
Α	-	0.55	1.10				
A1	0.05	0.10	0.15				
A2	0.85	0.85 0.90					
b	0.19	0.25	0.30				
С	0.09	0.15	0.20				
D	4.90	5.00	5.10				
E1	4.30	4.40	4.50				
Е	6.25	6.38	6.5				
L	0.50 0.60 0.70						
N	16						
е	0.65 BSC						
α	0° 4° 8°						

TOP VIEW

DESCRIPTION		SYMBOL		MILLIMETER			
				MIN	NOM	MAX	
TOTAL THICKNESS			Α	0.70	0.75	0.80	
STAND OFF			A1	0.00		0.05	
MOLD THICKNESS			A2	0.50	0.55	0.60	
L/F THICKNESS			А3	0.203 REF			
BODY SIZE	Х		D	3.90	4.00	4.10	
	Υ		Ε	3.90	4.00	4.10	
LEAD PITCH			е	0.65 BSC			
LEAD WIDTH		b		0.25	0.30	0.35	
LEAD LENGTH		L		0.35	0.40	0.45	
EP SIZE		D1		2.55	2.60	2.65	
		E1		2.55	2.60	2.65	
LEAD EDGE TO PKG EDGE			Z	0.875 BSC			
Tolerance of form and position							
PACKAGE EDGE TOLERANCE			aaa	0.1			
MOLD FLATNESS			bbb	0.1			
LEAD COPLANARITY			ccc	0.08			
LEAD POSITION OFFSET			ddd	0.1			
EXPOSED PAD OFFSET			eee		0.1		

Octal 16-/12-Bit, Low Power, High Performance DACs IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.