Features Input Voltage Range Without BIAS: 1.4 V to 6.5 VWith BIAS: 1.1 V to 6.5 V • Output Voltage Options: Fixed Output Voltage: 0.8 V to 3.95 VAdjustable Output Voltage: 0.8 V to 5.2 V ±1% Output Accuracy over Line Regulation, Load Regulation, and Operating Temperature Range With BIAS • 3-A Maximum Output Current Low Dropout Voltage: 300 mV Maximum at 3 A · High PSRR: 65 dB at 1 kHz 30 dB at 1 MHz 4-μV_{RMS}Output Voltage Noise Excellent Transient Response Enable and Adjustable Soft-Start Control Open-Drain Power-Good (PG) Output Stable with 22-µF or Greater Ceramic Output Capacitor Over-Current Protection • Over-Temperature Protection Operating Temperature Range: –40°C to +125°C · Package Options: QFN3.5X3.5-20 # **Applications** - Wireless Communication: CPU, ASIC, FPGA, CPLD, DSP - High-Performance Analog: ADC, DAC, LVDS, VCO - Noise-Sensitive Imaging: CMOS Sensors, Video ASICs ### Description The TPL9308 is a 3-A high-current, 4- μ V_{RMS} low-noise, high-PSRR, high-accuracy linear regulator with maximum 300-mV ultra-low dropout voltage at 3-A load condition. The TPL9308 supports both fixed output voltage ranging from 0.8 V to 3.95 V and adjustable output voltage ranging from 0.8 V to 5.2 V with an external resistor dividers. Ultra-low noise, high PSRR, and high-output-current capabilities make the TPL9308 an ideal power supply for noise-sensitive applications, such as high-speed communication facilities, test and measurement devices, or high-definition imaging equipment. Accurate output voltage tolerance, output voltage remote sensing, excellent transient response, and adjustable soft-start control ensure the TPL9308 an optimal power supply for the large-scale processors and digital loads, such as ASIC, FPGA, CPLD, and DSP. The TPL9308 provides a 20-pin QFN3.5X3.5 package with guaranteed operating junction temperature ranging (T_J) from -40° C to $+125^{\circ}$ C. ## **Typical Application Circuit** ## **Table of Contents** | Features | 1 | |---|----| | Applications | 1 | | Description | 1 | | Typical Application Circuit | 1 | | Product Family Table | 3 | | Revision History | 3 | | Pin Configuration and Functions | 4 | | Specifications | 5 | | Absolute Maximum Ratings ⁽¹⁾ | 5 | | ESD, Electrostatic Discharge Protection | 5 | | Recommended Operating Conditions | 6 | | Thermal Information | 6 | | Electrical Characteristics | 7 | | Electrical Characteristics (Continued) | 8 | | Electrical Characteristics (Continued) | 9 | | Typical Performance Characteristics | 10 | | Detailed Description | 14 | | Overview | 14 | | Functional Block Diagram | 14 | | Feature Description | 14 | | Application and Implementation | 19 | | Application Information | 19 | | Typical Application | 19 | | Layout | 21 | | Layout Guideline | 21 | | Tape and Reel Information | 22 | | Package Outline Dimensions | 23 | | QFN3.5X3.5-20 | 23 | | Order Information | 24 | | IMPORTANT NOTICE AND DISCLAIMER | 25 | # **Product Family Table** | Order Number | Output Voltage (V) | Package | |------------------|-----------------------------|---------------| | TPL9308AD-QF6R-S | Adjustable (0.8 V to 5.2 V) | QFN3.5X3.5-20 | # **Revision History** | Date | Revision | Notes | |------------|-----------|------------------------------| | 2023-01-15 | Rev.Pre.0 | Preliminary revision. | | 2023-02-28 | Rev.A.0 | Initial released. | | 2023-05-04 | Rev.A.1 | Updated Thermal Information. | www.3peak.com 3 / 26 DA20230301A1 # **Pin Configuration and Functions** TPL9308 QFN3.5X3.5-20 Package Top View Table 1. Pin Functions: TPL9305 | Pin No. | Pin Name | I/O | Description | |--------------------------|--|-----|--| | 5, 6, 7,
9, 10,
11 | 50mV, 100mV,
200mV, 400mV,
800mV, 1.6V | I | Fixed output voltage configuration pins. Connect these pins to ground to increase the output voltage. Leave these pins open when using the external resistor divider. | | 12 | BIAS | I | BIAS input pin. A 10-µF capacitor or larger must be connected between this pin and ground. Leave BIAS pin open or tied to ground when not used. | | 14 | EN | I | Regulator enable pin. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. | | 3 | FB | I | Output voltage feedback pin. Connect to an external resistor divider to adjust the output voltage. A 10-nF feed-forward capacitor from FB to OUT (as close as possible to FB pin) is recommended to maximize regulator ac performance. | | 8, 18 | GND | _ | Ground reference pin. Connect the GND pin to PCB ground plane directly. | | 15, 16, 17 | IN | I | Input supply pin. A 10-μF or greater ceramic capacitor from IN to ground (as close as possible to IN pin) is required. | | 13 | NR/SS | I | Noise-reduction and soft-start control pin. A 10-nF or greater capacitor from NR/SS to GND (as close as possible to NR/SS pin) is required. | | 1, 19, 20 | OUT | 0 | Regulated output voltage pin. A 22-µF or larger ceramic capacitor from OUT to ground (as close as possible to OUT pin) is required to ensure regulator stability. | | 4 | PG | 0 | Open-drain power-good output pin. Leave the PG pin open when not used. | | 2 | SNS | ı | Output voltage sense input pin. Connect this pin to the load side of the output trace only when using the fixed output voltage. Leave this pin open when using the external resistor divider. | ⁽¹⁾ Exposed PAD must be connected to a large-area ground plane to maximize the thermal performance. www.3peak.com 4 / 26 DA20230301A1 ## **Specifications** ## Absolute Maximum Ratings (1) | | Parameter | Min | Max | Unit | |------------------|-------------------------------------|------|------------------------|------| | IN, BIAS, E | N, PG | -0.3 | 7 | V | | OUT, SNS | | -0.3 | V _{IN} + 0.3 | V | | NR/SS, FB | | -0.3 | 3.6 | V | | 50 mV, 100 | mV, 200 mV, 400 mV, 800 mV, 1.6 V | -0.3 | V _{OUT} + 0.3 | V | | TJ | Maximum Junction Temperature | -40 | 150 | °C | | T _{STG} | Storage Temperature Range | -65 | 150 | °C | | TL | Lead Temperature (Soldering 10 sec) | | 260 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. ### **ESD, Electrostatic Discharge Protection** | | Parameter | Condition | Minimum Level | Unit | |-----|--------------------------|----------------------------|---------------|------| | НВМ | Human Body Model ESD | ANSI/ESDA/JEDEC JS-001 (1) | ±4 | kV | | CDM | Charged Device Model ESD | ANSI/ESDA/JEDEC JS-002 (2) | ±1.5 | kV | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. www.3peak.com 5 / 26 DA20230301A1 ⁽²⁾ All voltage values are with respect to GND. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # **Recommended Operating Conditions** | | Parameter | Min | Тур | Max | Unit | |--------------------|--|-----|------|------|------| | IN | Input Voltage | 1.1 | | 6.5 | ٧ | | BIAS | BIAS Voltage | 3 | | 6.5 | V | | EN | Enable Voltage | 0 | | 6.5 | V | | OUT | Output Voltage | 0.8 | | 5.2 | ٧ | | C _{IN} | Input Capacitor | 10 | | | μF | | C _{OUT} | Output Capacitor | 22 | 47 | | μF | | C _{NR/SS} | NR/SS Capacitor | | 10 | 1000 | nF | | R ₁ | High-Side Resistor of the Resistor Divider | | 12.1 | | kΩ | | R ₂ | Low-Side Resistor of the Resistor Divider | | | 160 | kΩ | | R _{PG} | Power-good Pull-up Resistor | 10 | | 100 | kΩ | | TJ | Junction Temperature Range | -40 | | 125 | ů | ### **Thermal Information** | Package Type | ackage Type θ _{JA} | | Ө ЈС,ТОР | θ јс,воттом | Unit | | |---------------|-----------------------------|------|-----------------|--------------------|------|--| | QFN3.5X3.5-20 | 30.8 | 10.1 | 39.1 | 3.2 | °C/W | | www.3peak.com 6 / 26 DA20230301A1 #### **Electrical Characteristics** All test conditions: $T_J = -40^{\circ}\text{C}$ to +125°C (typical value at $T_J = +25^{\circ}\text{C}$), $V_{IN} = V_{OUT(NOM)} + 0.4$ V or 1.4 V, whichever is greater; $V_{BIAS} = \text{open}$, $V_{OUT(NOM)} = 0.8$ V, $V_{EN} = 1.1$ V, $C_{IN} = 10$ μF , $C_{OUT} = 22$ μF , $C_{NR/SS} = 0$ nF, $C_{FF} = 0$ nF, OUT connect to 50 Ω to ground, PG connected to 100 $k\Omega$ to OUT, unless otherwise noted. | | Parameter | Conditions | Min | Тур | Max | Unit | |--|----------------------------|--|------|-----|------|--------------------| | Supply In | out Voltage and Current | | | | | | | V _{IN} ⁽¹⁾ | Input Supply Voltage Range | | 1.1 | | 6.5 | V | | V _{BIAS} | Bias Supply Voltage Range | V _{IN} = 1.1 V | 3 | | 6.5 | V | | | Input Supply UVLO | V _{IN} rising with V _{BIAS} = 3 V | | | 1.09 | V | | V _{IN} (1) V _{BIAS} UVLO _{IN1} UVLO _{IN2} UVLO _{BIAS} I _{GND} I _{SD} I _{BIAS} Enable and V _{IH(EN)} V _{IL(EN)} I _{EN} V _{PG} | Hysteresis | | | 200 | | mV | | | Input Supply UVLO | V _{IN} rising, V _{BIAS} = open | | | 1.39 | V | | UVLO _{IN2} | Hysteresis | | | 200 | | mV | | UVLO _{BIAS} | BIAS Supply UVLO | V _{BIAS} rising, V _{IN} = 1.1 V | | | 2.9 | V | | | Hysteresis | | | 200 | | mV | | | | V _{IN} = 6.5 V, I _{OUT} = 5 mA | | 5 | 15 | mA | | IGND | GND Pin Current | V _{IN} = 1.4 V, I _{OUT} = 3 A | | 5 | 15 | mA | | | GND FIII Current | V _{IN} = 1.1 V, V _{BIAS} = 3 V, I _{OUT} = 3 | | 5 | 15 | mA | | I _{SD} | Shutdown Current | V _{IN} = 6.5 V, V _{EN} = 0.5 V, PG = open | | | 68 | μА | | I _{BIAS} | BIAS Pin Current | V _{IN} = 1.1 V, V _{BIAS} = 6.5 V, I _{OUT} = 3 A | | 2.5 | 5 | mA | | Enable an | d Power Good | | | | | | | V _{IH(EN)} | EN High-Level Input | Device enable | 1.1 | | 6.5 | V | | V _{IL(EN)} | EN Low-Level Input | Device disable | 0 | | 0.4 | V | | I _{EN} | EN Pin Current | V _{IN} = 6.5 V, V _{EN} = 0 V to 6.5 V | -0.5 | | 0.5 | μA | | ., | PG Threshold | V _{ou⊤} falling | 82% | 84% | 88% | × V _{OUT} | | V _{PG} | Hysteresis | | | 2% | | × V _{OUT} | | V _{OL(PG)} | PG Low-Level Output | V _{OUT} < V _{PG} , source 1 mA to PG pin | | | 0.4 | V | | I _{PG} | PG Leakage Current | V _{OUT} > V _{PG} , apply 6.5 V at PG pin | | | 1 | μA | ⁽¹⁾ Minimum $V_{IN} = V_{OUT(NOM)} + V_{DO}$ or 1.4 V or 1.1 V with $V_{BIAS} = 3$ V, whichever is greater. www.3peak.com 7 / 26 DA20230301A1 ### **Electrical Characteristics (Continued)** All test conditions: $T_J = -40^{\circ}\text{C}$ to +125°C (typical value at $T_J = +25^{\circ}\text{C}$), $V_{IN} = V_{OUT(NOM)} + 0.4 \text{ V}$ or 1.4 V, whichever is greater; $V_{BIAS} = \text{open}$, $V_{OUT(NOM)} = 0.8 \text{ V}$, $V_{EN} = 1.1 \text{ V}$, $C_{IN} = 10 \text{ }\mu\text{F}$, $C_{OUT} = 10 \text{ }\mu\text{F}$, $C_{NR/SS} = 0 \text{ nF}$, $C_{FF} = \text{open}$, OUT connect to 50 Ω to ground, PG connected to 100 k Ω to OUT, unless otherwise noted. | | Parameter | Co | nditions | Min | Тур | Max | Unit | |--|-----------------------------|--|--------------------------------------|------|------|------|------| | Regulated | Output Voltage and Current | | | | | | | | | O. to . t . V - It | Fixed | | 0.8 | | 3.95 | V | | VOUT | Output Voltage Range | Adjustable | | 0.8 | | 5.2 | V | | VOUT AVOUT VFB IFB VNR/SS INR/SS INLIM | Accuracy (1) | V _{OUT} = 0.8 V to 5. | 2 V, I _{OUT} = 5 mA to 2 A | -1% | | 1% | | | A) (| Line Regulation | V _{IN} = 1.4 V to 6.5 | V, I _{OUT} = 5 mA | | 0.03 | | mV/V | | ΔV _{OUT} | Load Regulation | V _{IN} = 1.4 V, I _{OUT} = | 5 mA to 2 A | | 0.7 | | mV/A | | V _{FB} | Feedback Voltage | | | | 0.8 | | V | | I _{FB} | FB Leakage Current | V _{IN} = 6.5 V, stress | s V _{FB} = 0.8 V | -100 | | 100 | nA | | V _{NR/SS} | NR/SS Voltage | | | | 0.8 | | V | | I _{NR/SS} | NR/SS Charging Current | V _{IN} = 6.5 V, V _{NR/SS} | 3 = 0 | 6 | 7.8 | 9 | μA | | | | V _{IN} = 1.4 V, I _{OUT} = | | 40 | 100 | mV | | | | | V _{IN} = 1.4 V, I _{OUT} = | | 80 | 200 | mV | | | | | V _{IN} = 1.4 V, I _{OUT} = | 3 A, V _{FB} = 0.8 V – 3% | | 120 | 300 | mV | | | | V _{IN} = 5.6 V, I _{OUT} = | | 120 | 300 | mV | | | V _{DO} | Dropout Voltage | V _{IN} = 1.1 V, V _{BIAS} :
V _{FB} = 0.8 V - 3% | | 40 | 100 | mV | | | | | V _{IN} = 1.1 V, V _{BIAS} V _{FB} = 0.8 V - 3% | | 80 | 200 | mV | | | | | V _{IN} = 1.1 V, V _{BIAS} V _{FB} = 0.8 V - 3% | | 120 | 300 | mV | | | I _{LIM} | Output Current Limit | $V_{IN} = V_{OUT(NOM)} + 0$
$90\% \times V_{OUT(NOM)}$ | 0.4 V, V _{OUT} is forced at | 3.7 | 4.7 | | А | | I _{SC} | Short-Circuit Current Limit | R _{LOAD} ≤ 20 mΩ | | | 1.5 | | Α | | PSRR and | Noise | | | | | | | | | | | f = 1 kHz | | 65 | | dB | | DCDC | Power Supply Ripple | I _{OUT} = 3 A, C _{NR/SS} | f = 1 MHz | | 30 | | dB | | POKK | Rejection | = 10 nF, C _{FF} = 10 nF | f = 1 kHz, V _{BIAS} = 3 V | | 65 | | dB | | V _{DO} | | | f = 1 MHz, V _{BIAS} = 3 V | | 30 | | dB | | | | | | | | | | ⁽¹⁾ Resistor tolerances are not included. The device is not tested under conditions where $V_{IN} > V_{OUT} + 2.5 \text{ V}$ and $I_{OUT} = 2 \text{ A}$ because the power dissipation is higher than the maximum rating of the package. www.3peak.com 8 / 26 DA20230301A1 ## **Electrical Characteristics (Continued)** All test conditions: $T_J = -40^{\circ}\text{C}$ to +125°C (typical value at $T_J = +25^{\circ}\text{C}$), $V_{IN} = V_{OUT(NOM)} + 0.4$ V or 1.4 V, whichever is greater; $V_{BIAS} = \text{open}$, $V_{OUT(NOM)} = 0.8$ V, $V_{EN} = 1.1$ V, $C_{IN} = 10$ μF , $C_{OUT} = 22$ μF , $C_{NR/SS} = 0$ nF, $C_{FF} = \text{open}$, OUT connect to 50 Ω to ground, PG connected to 100 k Ω to OUT, unless otherwise noted. | | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|----------------------------|---|-----|-----|-----|-------------------| | PSRR an | d Noise | | | | | | | V _N | | BW = 10 Hz to 100 kHz, V_{IN} = 1.1 V, V_{BIAS} = 3 V, V_{OUT} = 0.8 V, I_{OUT} = 3 A, $C_{NR/SS}$ = 100 nF, C_{FF} = 10 nF, C_{OUT} = 22 μ F | | 4 | | μV _{RMS} | | | Output Noise Voltage | BW = 10 Hz to 100 kHz, V_{IN} = 5.4 V V_{OUT} = 5 V, I_{OUT} = 3 A, $C_{NR/SS}$ = 100 nF, C_{FF} = 100 nF, C_{OUT} = 22 μ F | | 8 | | μV _{RMS} | | | | BW = 10 Hz to 100 kHz, V_{IN} = 5.4 V V_{OUT} = 5 V, I_{OUT} = 3 A, $C_{NR/SS}$ = 100 nF, C_{FF} = 10 nF, C_{OUT} = 22 μ F | | 10 | | μV _{RMS} | | Tempera | ture Range | | | ' | • | • | | T _{SD} | Thermal Shutdown Threshold | Temperature increasing | | 160 | | °C | | | Hysteresis | | | 20 | | °C | | TJ | Operating Temperature | | -40 | | 125 | °C | www.3peak.com 9 / 26 DA20230301A1 ### **Typical Performance Characteristics** All test conditions: T_J = 25°C, V_{IN} = V_{OUT(NOM)} + 0.4 V or 1.4 V, whichever is greater; V_{BIAS} = open, V_{OUT(NOM)} = 0.8 V, V_{EN} = 1.1 V, C_{IN} = 10 μ F, C_{OUT} = 22 μ F, $C_{NR/SS}$ = 0 nF, C_{FF} = 0 nF, OUT connect to 50 Ω to ground, PG connected to 100 $k\Omega$ to OUT, unless otherwise noted. $V_{IN} = 1.1 \text{ V}, V_{BIAS} = 3 \text{ V}, V_{OUT} = 0.8 \text{ V}, C_{IN} = 10 \mu\text{F}, C_{OUT} = 47$ μ F || 10 μ F || 10 μ F, $C_{NR/SS}$ = 10 nF, C_{FF} = 10 nF V_{IN} = 1.1 V, V_{BIAS} = 3 V, V_{OUT} = 0.5 V Figure 1. VIN PSRR || 10 μ F, C_{NR/SS} = 10 nF, C_{FF} = 10 nF $V_{IN} = 5.5 \text{ V}$, $V_{OUT} = 5.2 \text{ V}$, $C_{IN} = 10 \mu F$, $C_{OUT} = 47 \mu F \parallel 10 \mu F \mid V_{IN} = 1.1 \text{ V}$, $V_{OUT} = 0.8 \text{ V}$, $C_{IN} = 10 \mu F$, $C_{OUT} = 47 \mu F \parallel 10 \mu F$ || 10 μ F, C_{NR/SS} = 10 nF, C_{FF} = 10 nF Figure 3. V_{IN} PSRR V_{IN} = 1.4 V, V_{OUT} = 0.8 V, C_{IN} = 10 μ F, C_{OUT} = 47 μ F || 10 μ F | V_{IN} = 5.5 V, V_{OUT} = 5.2 V, C_{IN} = 10 μ F, C_{OUT} = 22 μ F, $C_{NR/SS}$ = || 10 μ F, C_{NR/SS} = 10 nF, C_{FF} = 10 nF Figure 5. Noise # Figure 4. VBIAS PSRR 10 nF, C_{FF} = 10 nF Figure 6. Noise ### **Detailed Description** #### Overview The TPL9308 is a 3-A high-current, $4-\mu V_{RMS}$ low-noise, high-PSRR, high-accuracy linear regulators with maximum 300-mV ultra-low dropout voltage at 3-A load condition. The TPL9308 supports both fixed output voltage ranging from 0.8 V to 3.95 V and adjustable output voltage ranging from 0.8 V to 5.2 V with an external resistor divider. Ultra-low noise, high-PSRR, and high-output-current capabilities make the TPL9308 an ideal power supply for noise-sensitive applications, such as high-speed communication facilities, test and measurement devices, and high-definition imaging equipment. Accurate output voltage tolerance, output voltage remote sensing, excellent transient response, and adjustable soft-start control ensures the TPL9308 an optimal power supply for large-scale processors and digital loads, such as CPU, ASIC, FPGA, CPLD, and DSP. ### **Functional Block Diagram** Figure 20. Functional Block Diagram ### **Feature Description** #### Enable (EN) The TPL9308 provides a device with an enable pin (EN) to enable or disable the device. Connect the enable pin to the GPIO of an external digital logic control circuit to control the device. When the V_{EN} voltage falls below $V_{IL(EN)}$, the LDO device turns off, and when the V_{EN} ramps above $V_{IH(EN)}$, the LDO device turns on. The TPL9308 also integrates an active discharge function. During normal operation, when the enable pin is pulled down below $V_{IL(EN)}$, the output voltage is discharged through the internal resistive path. www.3peak.com 14 / 26 DA20230301A1 #### **Under-Voltage Lockout (UVLO)** The TPL9308 uses an under-voltage lockout circuit to keep the output shut-off until the internal circuitry operates properly. #### Voltage Regulation (OUT, FB) The TPL9308 provides two options to set the output voltages: fixed output voltage configured by the programming pins or adjustable output voltage by external resistors. #### **Fixed Output Voltage Setting** The TPL9308 integrates resistor dividers internally to set the fixed output voltage. The fixed output voltage can be set from 0.8 V to 3.95 V by connecting the output voltage setting pins (pin 5 to pin 11) to ground or leaving them open. Use Equation 1 to calculate the output voltage. $$V_{OUT} = V_{NR/SS} + V_{Pin_Setting}$$ (1) Table 2 provides a full list of different output voltage targets and the corresponding pin settings. #### **Table 2. Fixed Output Voltage Setting** | V _{OUT} (V) | 50 mV | 100
mV | 200
mV | 400
mV | 800
mV | 1.6 V | VOUT
(V) | 50 mV | 100
mV | 200
mV | 400
mV | 800
mV | 1.6 V | |----------------------|-------|-----------|-----------|-----------|-----------|-------|-------------|-------|-----------|-----------|-----------|-----------|-------| | Pin | 5 | 6 | 7 | 9 | 10 | 11 | Pin | 5 | 6 | 7 | 9 | 10 | 11 | | 0.80 | Open | Open | Open | Open | Open | Open | 2.40 | Open | Open | Open | Open | Open | GND | | 0.85 | GND | Open | Open | Open | Open | Open | 2.45 | GND | Open | Open | Open | Open | GND | | 0.90 | Open | GND | Open | Open | Open | Open | 2.50 | Open | GND | Open | Open | Open | GND | | 0.95 | GND | GND | Open | Open | Open | Open | 2.55 | GND | GND | Open | Open | Open | GND | | 1.00 | Open | Open | GND | Open | Open | Open | 2.60 | Open | Open | GND | Open | Open | GND | | 1.05 | GND | Open | GND | Open | Open | Open | 2.65 | GND | Open | GND | Open | Open | GND | | 1.10 | Open | GND | GND | Open | Open | Open | 2.70 | Open | GND | GND | Open | Open | GND | | 1.15 | GND | GND | GND | Open | Open | Open | 2.75 | GND | GND | GND | Open | Open | GND | | 1.20 | Open | Open | Open | GND | Open | Open | 2.80 | Open | Open | Open | GND | Open | GND | | 1.25 | GND | Open | Open | GND | Open | Open | 2.85 | GND | Open | Open | GND | Open | GND | | 1.30 | Open | GND | Open | GND | Open | Open | 2.90 | Open | GND | Open | GND | Open | GND | | 1.35 | GND | GND | Open | GND | Open | Open | 2.95 | GND | GND | Open | GND | Open | GND | | 1.40 | Open | Open | GND | GND | Open | Open | 3.00 | Open | Open | GND | GND | Open | GND | | 1.45 | GND | Open | GND | GND | Open | Open | 3.05 | GND | Open | GND | GND | Open | GND | | 1.50 | Open | GND | GND | GND | Open | Open | 3.10 | Open | GND | GND | GND | Open | GND | | 1.55 | GND | GND | GND | GND | Open | Open | 3.15 | GND | GND | GND | GND | Open | GND | | 1.60 | Open | Open | Open | Open | GND | Open | 3.20 | Open | Open | Open | Open | GND | GND | | 1.65 | GND | Open | Open | Open | GND | Open | 3.25 | GND | Open | Open | Open | GND | GND | | 1.70 | Open | GND | Open | Open | GND | Open | 3.30 | Open | GND | Open | Open | GND | GND | | 1.75 | GND | GND | Open | Open | GND | Open | 3.35 | GND | GND | Open | Open | GND | GND | | 1.80 | Open | Open | GND | Open | GND | Open | 3.40 | Open | Open | GND | Open | GND | GND | | 1.85 | GND | Open | GND | Open | GND | Open | 3.45 | GND | Open | GND | Open | GND | GND | | 1.90 | Open | GND | GND | Open | GND | Open | 3.50 | Open | GND | GND | Open | GND | GND | www.3peak.com 15 / 26 DA20230301A1 | 1.95 | GND | GND | GND | Open | GND | Open | 3.55 | GND | GND | GND | Open | GND | GND | |------|------|------|------|------|-----|------|------|------|------|------|------|-----|-----| | 2.00 | Open | Open | Open | GND | GND | Open | 3.60 | Open | Open | Open | GND | GND | GND | | 2.05 | GND | Open | Open | GND | GND | Open | 3.65 | GND | Open | Open | GND | GND | GND | | 2.10 | Open | GND | Open | GND | GND | Open | 3.70 | Open | GND | Open | GND | GND | GND | | 2.15 | GND | GND | Open | GND | GND | Open | 3.75 | GND | GND | Open | GND | GND | GND | | 2.20 | Open | Open | GND | GND | GND | Open | 3.80 | Open | Open | GND | GND | GND | GND | | 2.25 | GND | Open | GND | GND | GND | Open | 3.85 | GND | Open | GND | GND | GND | GND | | 2.30 | Open | GND | GND | GND | GND | Open | 3.90 | Open | GND | GND | GND | GND | GND | | 2.35 | GND | GND | GND | GND | GND | Open | 3.95 | GND | GND | GND | GND | GND | GND | **Table 3. External Resistor Combinations** | T | External Res | istors Divider | | | | | |---------------------------|--------------|----------------|-------------------------------|--|--|--| | Target Output Voltage (V) | R1 (kΩ) | R2 (kΩ) | Calculated Output Voltage (V) | | | | | 0.80 | 0 | Open | 0.800 | | | | | 0.81 | 2 | 160 | 0.810 | | | | | 0.82 | 4.02 | 160 | 0.820 | | | | | 0.83 | 6.04 | 160 | 0.830 | | | | | 0.84 | 8.06 | 160 | 0.840 | | | | | 0.85 | 10 | 160 | 0.850 | | | | | 0.86 | 12 | 160 | 0.860 | | | | | 0.87 | 12.4 | 143 | 0.869 | | | | | 0.88 | 12.4 | 124 | 0.880 | | | | | 0.89 | 12 | 107 | 0.890 | | | | | 0.90 | 12.4 | 100 | 0.899 | | | | | 0.95 | 12.4 | 66.5 | 0.949 | | | | | 1.00 | 12.4 | 49.9 | 0.999 | | | | | 1.10 | 12.4 | 33.2 | 1.099 | | | | | 1.20 | 12.4 | 24.9 | 1.198 | | | | | 1.50 | 12.4 | 14.3 | 1.494 | | | | | 1.80 | 12.4 | 10 | 1.792 | | | | | 1.90 | 12.1 | 8.87 | 1.891 | | | | | 2.50 | 12.4 | 5.9 | 2.481 | | | | | 2.85 | 12.1 | 4.75 | 2.838 | | | | | 3.00 | 12.1 | 4.42 | 2.990 | | | | | 3.30 | 11.8 | 3.74 | 3.324 | | | | | 3.60 | 12.1 | 3.48 | 3.582 | | | | | 4.50 | 11.8 | 2.55 | 4.502 | | | | | 5.00 | 12.4 | 2.37 | 4.986 | | | | www.3peak.com 16 / 26 DA20230301A1 #### **Adjustable Output Voltage Setting** The TPL9308 also provides an adjustable output voltage option. Using external resistor dividers, the output voltage of TPL9308 is determined by the value of the resistors R1 and R2 in Figure 21. Use the Equation 2 to calculate the output voltage. $$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right) \tag{2}$$ #### Where. - the feedback voltage V_{FB} is 0.8 V. - · R1 is the high-side feedback resistor. - R2 is the low-side feedback resistor. Table 3 provides a list of recommended resistor combinations to achieve the common output voltage values. #### **Output Soft-Start Control (NR/SS)** The TPL9308 integrates an adjustable soft-start function to control the output voltage ramp-up slew rate and start-up time. By selecting the external capacitor at the NR/SS pin ($C_{NR/SS}$), the output start-up time can be calculated with Equation 3. $$t_{STRATUP} = 1.25 \times \frac{V_{NR/SS} \times C_{NR/SS}}{I_{NR/SS}}$$ (3) #### Where. - the typical value of V_{NR/SS} is 0.8 V. - the typical value of I_{NR/SS} is 7.8 μA. - C_{NR/SS} is the external capacitor at the NR/SS pin. ### **Charge Pump Noise** The TPL9308 integrates a charge pump to improve the PSRR and transient response under low input voltage conditions. The charge pump circuit generates a minimal amount of noise at the frequency of around 15 MHz. It is recommended to use 10-nF to 100-nF bypass capacitors close to the load a ferrite bead between the LDO output and the load input capacitors, forming a pi-filter to reduce the high-frequency noise level. #### Power Good (PG) The TPL9308 integrates an open-drain output power good indicator. Connect the PG pin to a pull-up voltage through a resistor from 10 k Ω to 100 k Ω if the power good function is used. Left the PG pin open if it is not used. After regulator startup, the PG pin keeps low impendence until the output voltage reaches the power good threshold $V_{PG,TH}$. When the output voltage is higher than $V_{PG,TH}$, the PG pin turns to high output impedance, and PG is pulled up to a high voltage level to indicate the output voltage is ready. #### **Output Active Discharge** The TPL9308 integrates an output discharge path from OUT to GND. When the device is disabled, the output will actively discharge the output voltage through an internal resistor of several hundred ohms. Do not rely on this active discharge circuit for discharging large output capacitors when the input voltage falls below the output voltage. Reverse current flow through internal power MOSFET can permanently damage the device, and external current protection is essential in this condition. #### **Over-Current Protection and Short-to-Ground Protection** The TPL9308 integrates an internal current limit that helps to protect the device during fault conditions. www.3peak.com 17 / 26 DA20230301A1 - When the output is pulled down below the target output voltage, over-current protection starts to work and limit the output current to a typical value of 4.7 A. - When the output is shorted to ground directly, short-to-ground protection starts to work and limit the output current to Isc. Under over-current conditions, the internal junction temperature ramps up quickly. When the junction temperature is high enough, it will cause over-temperature protection. #### **Over-Temperature Protection** The recommended operating junction temperature range is from -40°C to 125°C. When the junction temperature is between 125°C and the thermal shutdown (TSD) threshold, the regulator can still work well, but will reduce the device lifetime for long-term use. The over-temperature protection works when the junction temperature exceeds the thermal shutdown (TSD) threshold, which turns off the regulator immediately. When the device cools down and the junction temperature falls below the value, which equals to thermal shutdown threshold minus thermal shutdown hysteresis, the regulator turns on again. www.3peak.com 18 / 26 DA20230301A1 ## **Application and Implementation** #### Note Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ### **Application Information** The TPL9308 is a 3-A high-current, low-noise, high-PSRR, high-accuracy linear regulators with a maximum 300-mV ultra-low dropout voltage at 3-A load condition. The following application schematics show the typical usage of the TPL9308. ### **Typical Application** #### **Adjustable Output Operation** Figure 21 shows a typical application schematic of the TPL9308 with adjustable output operation. Refer to section Adjustable Output Voltage Setting to set the output voltage. Figure 21. Adjustable Output Operation #### **Fixed Output Operation** Figure 22 shows a typical application schematic of the TPL9308 with fixed output operation. Refer to the section Fixed Output Voltage Settingto set the output voltage. In this example, output voltage is set to 1.8 V (V_{NR/SS}+ 0.8 V + 0.2 V). www.3peak.com 19 / 26 DA20230301A1 Figure 22. Fixed 1.8-V Output with QFN Package #### **Input Capacitor and Output Capacitor** The TPL9308 is designed to be stable with low equivalent series resistance (ESR) ceramic capacitors at the input, output, and noise-reduction pin (NR/SS). It is recommended to use ceramic capacitors with X7R-, X5R-, and COG-rated dielectric materials to get good capacitive stability across temperature ranges. 3PEAK recommends adding a $10-\mu F$ or greater capacitor with a $0.1-\mu F$ bypass capacitor in parallel at the IN pin to keep the input voltage stable. The voltage rating of the capacitors must be greater than the maximum input voltage. To ensure loop stability, the TPL9308 requires a 22-µF or greater output capacitor. 3PEAK recommends selecting an X7R-type 47-µF ceramic capacitor with low ESR over temperature. Both input capacitors and output capacitors must be placed as close to the device pins as possible. ### **Power Dissipation** During normal operation, LDO junction temperature should not exceed 125°C. Using below equations to calculate the power dissipation and estimate the junction temperature. The power dissipation can be calculated using Equation 4. $$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$ (4) The junction temperature can be estimated using Equation 5. θ_{JA} is the junction-to-ambient thermal resistance. $$T_{J} = T_{A} + P_{D} \times \theta_{JA} \tag{5}$$ www.3peak.com 20 / 26 DA20230301A1 ## Layout ### **Layout Guideline** - Both input capacitors and output capacitors must be placed to the device pins as close as possible, and the vias between capacitors and device power pins must be avoided. - It is recommended to bypass the input pin to ground with a 0.1-µF bypass capacitor. The loop area formed by the bypass capacitor connection, the IN pin and the GND pin of the system must be as small as possible. - It is recommended to use wide and thick copper to minimize I×R drop and heat dissipation. - Exposed pad must be connected to the PCB ground plane directly, the copper area must be as large as possible. www.3peak.com 21 / 26 DA20230301A1 # **Tape and Reel Information** | Order Number | Package | D1 (mm) | W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P0 (mm) | W0 (mm) | Pin1
Quadrant | |----------------------|-------------------|---------|---------|---------|---------|---------|---------|---------|------------------| | TPL9308AD-
QF6R-S | QFN3.5X3.5-2
0 | 330 | 16.4 | 3.75 | 3.75 | 1.1 | 8 | 12 | Q2 | ## **Package Outline Dimensions** ### QFN3.5X3.5-20 ### **Order Information** | Order Number | Operating Temperature Range | Package | Marking Information | MSL | Transport Media, Quantity | Eco Plan | |------------------|-----------------------------|---------------|---------------------|------|---------------------------|----------| | TPL9308AD-QF6R-S | -40°C to 125°C | QFN3.5X3.5-20 | L938A | MSL3 | Tape and Reel, 4,000 | Green | **Green**: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances. www.3peak.com 24 / 26 DA20230301A1 ### IMPORTANT NOTICE AND DISCLAIMER Copyright[©] 3PEAK 2012-2023. All rights reserved. **Trademarks.** Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK. **Performance Information.** Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product. **Disclaimer.** 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use. www.3peak.com 25 / 26 DA20230301A1 This page intentionally left blank