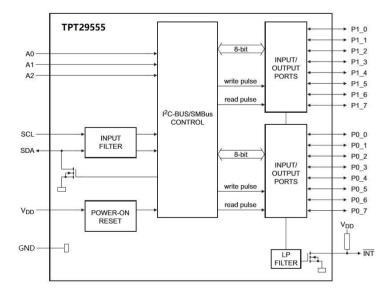


Features

- I²C-bus to 16-bit GPIO expander
- Operating power supply voltage from 1.65 V to 5.5 V
- Low standby current consumption:
 - 3.0 µA (typical at 5 V V_{cc})
 - 1.5 µA (typical at 3.3 V Vcc)
- 400 kHz Fast-mode I²C-bus
- 5 V tolerant I/Os
- Open-drain active LOW interrupt output (INT)
- Configurable Slave Address with 3 Address Pins
- Internal power-on reset
- Power-up with all channels configured as inputs with weak pull-up resistors
- Latch-Up performance exceeds 200 mA per JESD 78
- ESD Protection Exceeds JESD 22
 - 4000-V Human Body Model
 - 1500-V Charged Device Model

Applications

- Servers/Storages
- Routers (Telecom Switching Equipment)
- Personal Computers


Description

The TPT29555 is a 16-bit GPIO expander with interrupt and weak pull-up resistors for I^2 C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V that allows the TPT29555 to interconnect with 1.8-V microcontrollers.

The TPT29555 contains the register set of two pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers. The open-drain interrupt (INT) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line. the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the TPT29555 can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

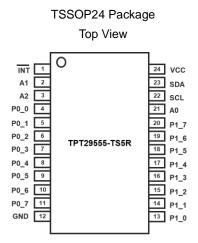
All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I²C-bus address and allow up to eight devices to share the same I²C-bus.

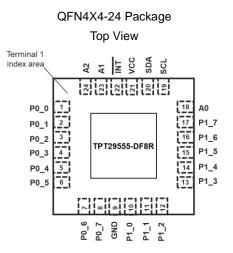
TPT29555 is available in TSSOP24 and QFN24 package, and is characterized from -40° C to $+85^{\circ}$ C.

Function Block Diagram

Table of Contents

Features	1
Applications	1
Description	1
Function Block Diagram	1
Revision History	3
Pin Configuration and Functions	4
Pin Functions	4
Specifications	6
Absolute Maximum Ratings	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	7
Electrical Characteristics	8
I ² C Interface Timing Requirements	10
Switching Characteristics	11
Typical Performance Characteristics	12
Detailed Description	13
Overview	13
Function Block Diagram	13
Feature Description	14
Tape and Reel Information	17
Package Outline Dimensions	18
TS5R (TSSOP24)	18
QF8R (QFN4X4-24L)	19
Order Information	20
IMPORTANT NOTICE AND DISCLAIMER	21




Revision History

Date	Revision	Notes
2020-06-12	Rev.Pre.0	Initial Version
2021-06-15	Rev.A0	First release version
2021-12-14	Rev.A1	Added Standard mode timing requirements
2022-01-29	Rev.A2	Fixed the typo of ICC unit in page 9 Fixed the typo of pin function and outline of QFN package
2023-08-07	Rev.A3	Fixed the typo in page 16

Pin Configuration and Functions

Pin Functions

	Pin		I/O	Description
Name	TSSOP24	QFN4X4-24	10	Description
A0	21	18	Input	Address input 0. Connect directly to VCC or ground
A1	2	23	Input	Address input 1. Connect directly to VCC or ground
A2	3	24	Input	Address input 2. Connect directly to VCC or ground
GND	12	9	GND	Ground
ĪNT	1	22	Output	Interrupt output. Connect to VCC through a pull-up resistor
P0_0	4	1	I/O	P-port I/O. Push-pull design structure. At power on, P0_0 is configured as an input
P0_1	5	2	I/O	P-port I/O. Push-pull design structure. At power on, P0_1 is configured as an input
P0_2	6	3	I/O	P-port I/O. Push-pull design structure. At power on, P0_2 is configured as an input
P0_3	7	4	I/O	P-port I/O. Push-pull design structure. At power on, P0_3 is configured as an input
P0_4	8	5	I/O	P-port I/O. Push-pull design structure. At power on, P0_4 is configured as an input
P0_5	9	6	I/O	P-port I/O. Push-pull design structure. At power on, P0_5 is configured as an input
P0_6	10	7	I/O	P-port I/O. Push-pull design structure. At power on, P0_6 is configured as an input
P0_7	11	8	I/O	P-port I/O. Push-pull design structure. At power on, P0_7 is configured as an input
P1_0	13	10	I/O	P-port I/O. Push-pull design structure. At power on, P1_0 is configured as an input

Pin Functions (Continued)

	Pin		I/O	Description
Name	TSSOP24	QFN4X4-24	20	Description
P1_1	14	11	I/O	P-port I/O. Push-pull design structure. At power on, P1_1 is configured as an input
P1_2	15	12	I/O	P-port I/O. Push-pull design structure. At power on, P1_2 is configured as an input
P1_3	16	13	I/O	P-port I/O. Push-pull design structure. At power on, P1_3 is configured as an input
P1_4	17	14	I/O	P-port I/O. Push-pull design structure. At power on, P1_4 is configured as an input
P1_5	18	15	I/O	P-port I/O. Push-pull design structure. At power on, P1_5 is configured as an input
P1_6	19	16	I/O	P-port I/O. Push-pull design structure. At power on, P1_6 is configured as an input
P1_7	20	17	I/O	P-port I/O. Push-pull design structure. At power on, P1_7 is configured as an input
SCL	22	19	Input	Serial clock bus. Connect to VCC through a pull-up resistor
SDA	23	20	Input	Serial data bus. Connect to VCC through a pull-up resistor
VCC	24	21	Supply	Supply voltage

Specifications

Absolute Maximum Ratings

	Parameter	Min	Max	Unit
Vcc	Supply voltage	-0.5	6	V
VI	Input voltage	-0.5	6	V
Vo	Output voltage	-0.5	6	V
I _{IK}	Input clamp current, V ₁ < 0		-20	mA
Іок	Output clamp current, Vo < 0		-20	mA
Іюк	Input-output clamp current, $V_0 < 0$ or $V_0 > V_{CC}$		±20	mA
I _{OL}	Continuous output low current, $V_0 = 0$ to V_{CC}		50	mA
I _{OH}	Continuous output high current, $V_0 = 0$ to V_{CC}		-50	mA
	Continuous current through GND		-250	mA
lcc	Continuous current through Vcc		160	mA
TJ	Maximum Junction Temperature		125	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) This data was taken with the JEDEC low effective thermal conductivity test board.

(3) This data was taken with the JEDEC standard multilayer test boards.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Parameter Condition			
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4	kV	
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1.5	kV	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Para	imeter	Min	Мах	Unit
Vcc	V _{CC} Supply voltage			5.5	V
Max	Lligh lovel input veltage	SCL, SDA	0.7 × Vcc	Vcc	V
Vih	High-level input voltage	A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	0.7 × Vcc	5.5	V
		SCL, SDA	-0.5	$0.3 \times V_{CC}$	mV
VIL	Low-level input voltage	A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	-0.5	0.3 × Vcc	mV
Іон	High-level output current	P0_7 ~ P0_0, P1_7 ~ P1_0		-10	mA
		P0_7 ~ P0_0, P1_7 ~ P1_0		25	mA
IOL	Low-level output current		6	mA	
TA	T _A Operating Temperature Range			85	°C

Thermal Information

Package Type	θ _{JA}	θ」ϲ	Unit
TSSOP24	68	21	°C/W
QFN24	60	25	°C/W

Electrical Characteristics

All test conditions: $V_{CC} = 1.65 \text{ V} \sim 5.5 \text{ V}$, $T_A = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input Elec	trical Specifications					
Vpor	Power-on reset voltage, V_{CC} rising	$V_I = V_{CC}$ or GND; $I_0 = 0$ mA		1.25	1.45	v
	Power-on reset voltage, V_{CC} falling	$V_I = V_{CC}$ or GND; $I_0 = 0$ mA	0.8	1.2		V
	LOW-level output current, SDA	V_{OL} = 0.4 V; V_{CC} = 1.65 V to 5.5 V	3			mA
	LOW-level output current, INT	V_{OL} = 0.4 V; V_{CC} = 1.65 V to 5.5 V	3			mA
		V _{OL} = 0.5 V; V _{CC} = 1.65 V	8			mA
	LOW-level output current, P	V _{OL} = 0.5 V; V _{CC} = 2.3 V	8			mA
IOL	port	$V_{OL} = 0.5 \text{ V}; V_{CC} = 3.0 \text{ V}$	8			mA
		$V_{OL} = 0.5 \text{ V}; V_{CC} = 4.5 \text{ V}$	8			mA
	LOW-level output current, P port	V _{OL} = 0.7 V; V _{CC} = 1.65 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 2.3 V	10			mA
		$V_{OL} = 0.7 \text{ V}; V_{CC} = 3.0 \text{ V}$	10			mA
		$V_{OL} = 0.7 \text{ V}; V_{CC} = 4.5 \text{ V}$	10			mA
		I _{OH} = -8 mA; V _{CC} = 1.65 V	1.2			V
	HIGH-level output voltage,	I _{OH} = -8 mA; V _{CC} = 2.3 V	1.8			V
	P port	$I_{OH} = -8 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6			V
		I _{OH} = -8 mA; V _{CC} = 4.75 V	4.1			V
Vон		I _{OH} = -10 mA; V _{CC} = 1.65 V	1.0			V
	HIGH-level output voltage,	I _{OH} = -10 mA; V _{CC} = 2.3 V	1.7			V
	P port	I _{OH} = -10 mA; V _{CC} = 3.0 V	2.5			V
		I _{OH} = -10 mA; V _{CC} = 4.75 V	4.0			V
	Input current: A0, A1, A2;	V_{CC} = 1.65 V to 5.5 V, V_I = V_{CC} or GND	-1		1	μA
li.	Input current: SCL, SDA	V_{CC} = 1.65 V to 5.5 V, V_I = V_{CC} or GND	-1		1	μA
Іін	HIGH-level input current: P port	$V_{I} = V_{CC}; V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$			1	μA
lıL	LOW-level input current: P port	$V_{I} = GND; V_{CC} = 1.65 V to 5.5 V$			-100	μA

(1) 100% tested at $T_A = 25^{\circ}C$.

(2) Parameters are provided by lab bench test and design simulation.

Electrical Characteristics (Continued)

All test conditions: $V_{CC} = 1.65 \text{ V} \sim 5.5 \text{ V}$, $T_A = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions			Тур	Max	Unit
			$V_{CC} = 5.5 V$		16	30	μA
		Active mode, $I_0 = 0$ mA;	V _{CC} = 3.6 V		9	20	μA
		I/O = inputs; fsc∟ = 400 kHz	V _{CC} = 2.7 V		6.2	15	μA
			V _{CC} = 1.95 V		4.2	10	μA
			V _{CC} = 5.5 V		0.90	1.5	mA
		Standby Mode, input low, Io = 0 mA; I/O = inputs; fscL = 0 kHz	Vcc = 3.6 V		0.48	1.3	mA
Icc	Supply current		Vcc = 2.7 V		0.43	1.0	mA
			V _{CC} = 1.95 V		0.31	0.9	mA
		Standby Mode, input	Vcc = 5.5 V		2.64	3.5	μA
			Vcc = 3.6 V		1.55	2.3	μA
		high, lo = 0 mA; l/O = inputs; fsc∟ = 0 kHz	Vcc = 2.7 V		1.07	1.6	μA
			Vcc = 1.95 V		0.68	1.2	μA
Ci	Input capacitance	V_{I} = V _{CC} or GND; V_{CC} = 1.65 V to 5.5 V ⁽²⁾			3		pF
0		$V_{I/O} = V_{CC}$ or GND; $V_D = 1$.65 V to 5.5 V $^{(2)}$		3		pF
Cio	Input/output capacitance	V _{I/O} = V _{CC} or GND; V _{CC} =	1.65 V to 5.5 V ⁽²⁾		5		pF

(1) 100% tested at $T_A = 25^{\circ}C$.

(2) Parameters are provided by lab bench test and design simulation.

I²C Interface Timing Requirements

Over recommended operating free-air temperature range, unless otherwise noted.

	Description	0	Standa	rd Mod	Fast Mode		
Symbol	Description	Conditions	Min	Мах	Min	Max	Unit
fscl	I ² C clock frequency		0	100	0	400	kHz
tsch	I ² C clock high time		4		0.6		μs
tscl	I ² C clock low time		4.7		1.3		μs
tsp	I ² C spike time			50		50	ns
tsds	I ² C serial-data setup time		250		100		ns
tsdh	I ² C serial-data hold time		10		10		ns
ticr	I ² C input rise time			1000	20	300	ns
ticf	I ² C input fall time			300	20 × (Vcc / 5.5 V)	300	ns
tocf	I ² C output fall time	10-pF to 400-pF bus		300	20 × (V _{CC} / 5.5 V)	300	ns
tbuf	I ² C bus free time between stop and start		4.7		1.3		μs
tsts	I ² C start or repeated start condition setup		4.7		0.6		μs
tsth	I ² C start or repeated start condition hold		4		0.6		μs
tsps	I ² C stop condition setup		4		0.6		μs
tvd(data)	Valid data time	SCL low to SDA output valid		3.5		0.9	μs
tvd(ack)	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low		3.5		0.9	μs
Cb	I ² C bus capacitive load			400		400	pF

Switching Characteristics

Over recommended operating free-air temperature range, $C_L \le 100 \text{ pF}$, unless otherwise noted.

Symbol	Description	From	То	Standard Mod		Fast Mode		Unit				
Symbol	Description	(Input)	(Output)	Min	Max	Min	Max	Unit				
tiv	Interrupt valid time	P port	INT		4		4	μs				
tir	Interrupt reset delay time	SCL	INT		4		4	μs				
4	Output data valid; For V _{CC} = 2.3 V ~ 5.5 V	SCL	SCL		001	001	Durat		400		400	ns
tpv	Output data valid; For V _{CC} = $1.65 \text{ V} \sim 2.3 \text{ V}$			P port		400		400	ns			
tps	Input data setup time	P port	SCL	15		15		ns				
tph	Input data hold time	P port	SCL	1		1		μs				

Parameter measurement waveforms

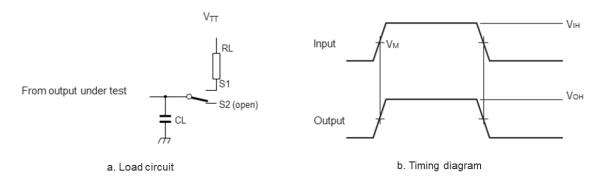
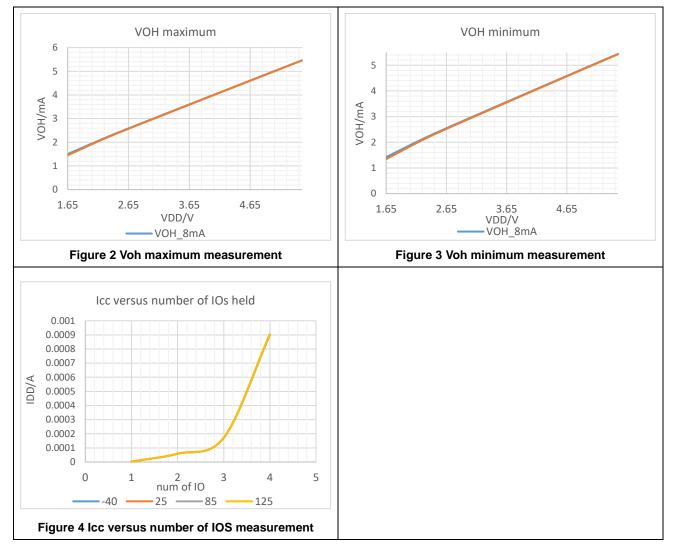



Figure 1 Load Circuit for Outputs

Typical Performance Characteristics

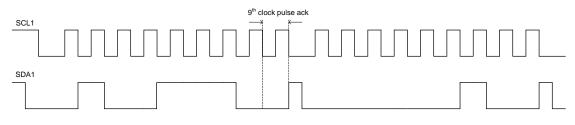
Detailed Description

Overview

The TPT29555 is a 16-bit GPIO expander with interrupt and builds in 100Kohm pull-up resistors for each IO port. The power supplier voltage range is from 1.65 V to 5.5 V that allows the TPT29555 to interconnect with 1.8-V microcontrollers.

The TPT29555 contains the register set of two pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers. The open-drain interrupt (INT) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the TPT29555 can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I²C-bus address and allow up to eight devices to share the same I²C-bus.



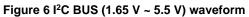

Function Block Diagram

Figure 5 Function Block Diagram

Feature Description

Device Address

Following a START condition, the bus master must output the address of the slave it is accessing. All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I²C-bus address and allow up to eight devices to share the same I²C-bus. To conserve power, address pins (A0, A1, A2) must be pulled HIGH or LOW. The address of the TPT29555 is shown as below.

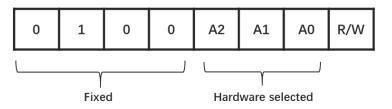


Figure 7 Slave Device Address

Control Register

Command byte

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Command	Register
0	Input port 0
1	Input port 1
2	Output port 0
3	Output port 1
4	Polarity Inversion port 0
5	Polarity Inversion port 1
6	Configuration port 0
7	Configuration port 1

Register 0 and 1: Input port registers

This register is an input-only port, which means the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3 (output port 1), and writes to this register have no effect.

Table 2 Input Port 0 Register

The default value 'X' is determined by the externally logic level.

Bit	7	6	5	4	3	2	1	0
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Table 3 Input Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	l1.7	l1.6	l1.5	l1.4	l1.3	l1.2	l1.1	l1.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Register 2 and 3: Output port registers

This register is an output-only port, which means the outcoming logic levels of the pins defined as outputs by Register 6 (Configuration port 0) and 7 (Configuration port 1). Bit values in this register have no effect on pins defined as inputs. In fact, the value reading from this register is in the flip-flop controlling the output selection, not the actual pin value.

Table 4 Output Port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	O0.0
Default	1	1	1	1	1	1	1	1

Table 5 Output Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	O1.7	O1.6	O1.5	01.4	O1.3	O1.2	O1.1	O1.0
Default	1	1	1	1	1	1	1	1

Register 4 and 5: Polarity Inversion registers

This register allows the user to invert the polarity of the input port register data. If a bit in this register is set (written with '1'), the input port data polarity is inverted. If a bit in this register is cleared (written with '0'), the input port data polarity is retained.

				, i	8			
Bit	7	6	5	4	3	2	1	0
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0

Table 6 Polarity Inversion port 0 Register

Table 7 Polarity Inversion port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

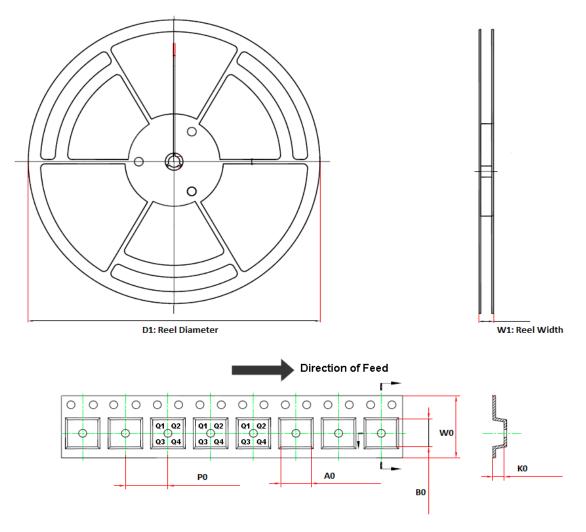
Register 6 and 7: Configuration registers

This register configures the directions of the I/O pins. If a bit in this register is set (written with '1'), the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared (written with '0'), the corresponding port pin is enabled as an output. Note that there is a high-value resistor tied to V_{DD} at each pin. At reset, the device's ports are inputs with a pull-up to V_{DD} .

Table 8 Configuration port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1

Table 9 Configuration port 1 Register


Bit	7	6	5	4	3	2	1	0
Symbol	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

Reserved register

As the part of SMBUS function, the register 0X0C of TPT29555 is reserved. Any operation of these registers is not suggested.

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT29555-TS5R	24-Pin TSSOP	330	22.4	6.8	8.3	1.6	8	16	Q1
TPT29555-QF8R	24-Pin QFN	330	17.6	4.3	4.3	1.1	8	12	Q1

MILLIMETER

MIN NOM MAX

0.13 0.14

0.65BSC

0.45 0.60 0.75

1.00BSC

0.05

0.80 1.00 1.05

0.39 0.44 0.49

0.20

0.19 0.22 0.25

0.13

0.12

7.70 7.80 7.90

6.20 6.40 6.60

4.30 4.40 4.50

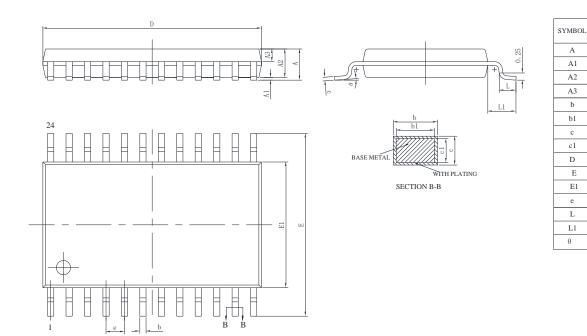
0

1.20

0.15

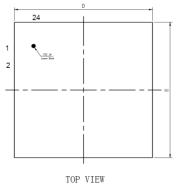
0.29

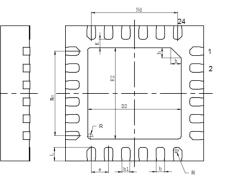
0.18


8°

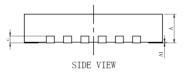
I²C to 16-bit GPIO Expander with Interrupt

Package Outline Dimensions


TS5R (TSSOP24)



_			~	


QF8R (QFN4X4-24L)

BOTTOM VIEW

MILLIMETER SYMBOL MIN NOM MAX 0.80 0.85 0.90 Α 0.05 A1 0 0.02 0.20 0.25 0.30 b b1 0.23REF 0.203REF с D 3.90 4.00 4.10 D2 2.65 2.70 2.75 0.50BSC e Nd 2.50BSC Ne 2. 50BSC 3.90 4.00 Е 4.10 2.65 2.70 2.75 E2 L 0.35 0.40 0.45 h 0.25 0.30 0.35 K 0.25REF R 0.075REF

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT29555-TS5R	−40 to 85°C	24-Pin TSSOP	29555	MSL3	4,000	Green
TPT29555-QF8R	−40 to 85°C	24-Pin QFN	29555	MSL3	3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.